Publications by authors named "Hansen Luan"

The objective of this work was to identify an enabling formulation for an insoluble compound ZL006 with potency of boosting leukocytes after chemotherapy. The low oral bioavailability (<1%) of its conventional suspension was the hurdle for the preclinical evaluation via oral administration. Preformulation studies including physical form screening and physicochemical properties determination were performed.

View Article and Find Full Text PDF

The mechanism of L-Val on how to improve the stability of gabapentin (GBP) was described by the combination of chemical analysis experiments and computer simulations. Scanning electron microscope (SEM), powder X-ray diffraction (PXRD), and differential scanning calorimeter (DSC), coupled with attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), were used to identify β-GBP prepared by rapid solvent removal method. The reaction barriers on crystal planes, β-GBP (100) and β-GBP (10-1), are smaller than α-GBP and γ-GBP, reaching 276.

View Article and Find Full Text PDF

ZL-004, a promising small molecule that increases white blood cell counts, was developed for extended-release nanosuspensions to improve low solubility and compliance of patients. In vivo pharmacokinetic studies of nanosuspensions with different particle sizes and administration volumes were conducted. Unexpectedly, C of NS-PC-L (1156 nm) was 1.

View Article and Find Full Text PDF

Zinc pthalocyanine (ZnPc) is a second-generation photodynamic therapy (PDT) sensitizer with sufficient PDT activity for squamous cell carcinoma (SCC). ZnPc is hydrophobic and insoluble in water, which creates hurdles in systemic administration and hence restricts its use in clinic. Here we have loaded ZnPc on chitosan/methoxy polyethylene glycol-polylactic acid (CPP) nanoparticles to form Z-CPP to enhance PDT efficacy.

View Article and Find Full Text PDF

Recent large outbreaks of hand-foot-and-mouth disease (HFMD) have seriously affected the health of young children. Enterovirus 71 (EV71) is the main causative agent of HFMD. Herein, for the first time, rapidly dissolvable microneedles (MNs) loaded with EV71 virus-like particles (VLPs) were evaluated whether they could induce robust immune responses that confer protection against EV71 infection.

View Article and Find Full Text PDF

Background: Ursolic acid (UA), a natural pentacyclic triterpenoid, has been reported to possess a variety of pharmacological activities, but the poor oral bioavailability of UA owing to the poor aqueous solubility and membrane permeability limits the further clinical application.

Objective: The purpose of the present study was to develop UA nanocrystals and microcrystals employing high pressure homogenization (HPH) and to evaluate their effects on UA oral bioavailability.

Method: The crystalline morphology of UA nanocrystals and microcrystals prepared by HPH was observed by scanning electron microscopy and the crystalline state was characterized by differential scanning calorimetry (DSC) and powder X-ray diffraction (PXRD).

View Article and Find Full Text PDF

Background: Squamous cell carcinoma (SCC) is a common skin cancer, and its treatment is still difficult. The aim of this study was to evaluate the effectiveness of nanoparticle (NP)-assisted 5-aminolevulinic acid (ALA) delivery for topical photodynamic therapy (PDT) of cutaneous SCC.

Materials And Methods: Ultraviolet-induced cutaneous SCCs were established in hairless mice.

View Article and Find Full Text PDF

Purpose: To assess the feasibility of transdermal delivery of exenatide (EXT) using low-molecular-weight sodium hyaluronate (HA) dissolving microneedles (MNs) patches for type 2 diabetes mellitus therapy.

Methods: Micromold casting method was used to fabricate EXT-loaded dissolving MNs. The characteristics of prepared MNs including mechanical strength, in vitro/in vivo insertion capacity, dissolution profile and storage stability were then investigated.

View Article and Find Full Text PDF

Background: 5-Aminolevulinic acid (ALA) is a prodrug for topical photodynamic therapy. The effectiveness of topical ALA can be limited by its bioavailability. The aim of this study was to develop a novel ALA delivery approach using poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs).

View Article and Find Full Text PDF