Describing long-range energy transport is a crucial step, both toward deepening our knowledge on natural light-harvesting systems and toward developing novel photoactive materials. Here, we combine experiment and theory to resolve and reproduce energy transport on pico- to nanosecond time scales in single H-type supramolecular nanofibers based on carbonyl-bridged triarylamines (CBT). Each nanofiber shows energy transport dynamics over long distances up to ∼1 μm, despite exciton trapping at specific positions along the nanofibers.
View Article and Find Full Text PDFThe controlled electrochemical deposition of hydrogels from low-molecular weight hydrogelators (LMWHGs) allows for the defined formation of thin films on electrodes. Here, the deposition of fibrillar networks consisting of ,',″-tris(4-carboxyphenylene)-1,3,5-benzenetricarboxamide (BTA) onto ultraflat gold electrodes has been studied. This process, also termed electrogelation, is based on a local change in the pH due to electrolysis of water at the electrode.
View Article and Find Full Text PDFFunneling excitation energy toward lower energy excited states is a key concept in photosynthesis, which is often realized with at most two chemically different types of pigment molecules. However, current synthetic approaches to establish energy funnels, or gradients, typically rely on Förster-type energy-transfer cascades along many chemically different molecules. Here, we demonstrate an elegant concept for a gradient in the excited-state energy landscape along micrometer-long supramolecular nanofibers based on the conjugated polymer poly(3-hexylthiophene), P3HT, as the single component.
View Article and Find Full Text PDFPolymers have a reputation for several advantageous characteristics like chemical resistance, weight reduction, and simple form-giving processes. The rise of additive manufacturing technologies such as Fused Filament Fabrication (FFF) has introduced an even more versatile production process that supported new product design and material concepts. This led to new investigations and innovations driven by the individualization of customized products.
View Article and Find Full Text PDFEfficient energy transport over long distances is essential for optoelectronic and light-harvesting devices. Although self-assembled nanofibers of organic molecules are shown to exhibit long exciton diffusion lengths, alignment of these nanofibers into films with large, organized domains with similar properties remains a challenge. Here, it is shown how the functionalization of C -symmetric carbonyl-bridged triarylamine trisamide (CBT) with oligodimethylsiloxane (oDMS) side chains of discrete length leads to fully covered surfaces with aligned domains up to 125 × 70 µm in which long-range exciton transport takes place.
View Article and Find Full Text PDFA novel approach, in the context of bioprinting, is the targeted printing of a defined number of cells at desired positions in predefined locations, which thereby opens up new perspectives for life science engineering. One major challenge in this application is to realize the targeted printing of cells onto a gel substrate with high cell survival rates in advanced bioinks. For this purpose, different alginate-dialdehyde-polyethylene glycol (ADA-PEG) inks with different PEG modifications and chain lengths (1-8 kDa) were characterized to evaluate their application as bioinks for drop on demand (DoD) printing.
View Article and Find Full Text PDFFunctional, hierarchically mesostructured nonwovens are of fundamental importance because complex fiber morphologies increase the active surface area and functionality allowing for the effective immobilization of metal nanoparticles. Such complex functional fiber morphologies clearly widen the property profile and enable the preparation of more efficient and selective filter media. Here, the realization of hierarchically mesostructured nonwovens with barbed wire-like morphology is demonstrated by combining electrospun polystyrene fibers, decorated with patchy worm-like micelles, with solution-processed supramolecular short fibers composed of 1,3,5-benzenetricarboxamides with peripheral N,N-diisopropylaminoethyl substituents.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2022
Electret materials find use in various applications, such as microphones or filter media. In recent years, electrets have been used also increasingly on the micrometer scale, for example, in MEMS or for nano-xerography. However, for these applications, it becomes more important to prepare defined charge structures with sub-micrometer features.
View Article and Find Full Text PDFDirected transport of singlet excitation energy is a key process in natural light-harvesting systems and a desired feature in assemblies of functional organic molecules for organic electronics and nanotechnology applications. However, progress in this direction is hampered by the lack of concepts and model systems. Here we demonstrate an all-optical approach to manipulate singlet exciton transport pathways within supramolecular nanostructures singlet-triplet annihilation, , to enforce an effective motion of singlet excitons along a predefined direction.
View Article and Find Full Text PDFBenzene bisamides are promising building blocks for supramolecular nano-objects. Their functionality depends on morphology and surface properties. However, a direct link between surface properties and molecular structure itself is missing for this material class.
View Article and Find Full Text PDFThe immobilization of metal nanoparticles without agglomeration and leaching within composite nonwovens is often challenging and of great importance, for example, for catalytic applications. In this study, we prepared composite nonwovens based on electrospun polyacrylonitrile (PAN) short fibers and supramolecular terpyridine-functionalized benzene-1,3,5-tricarboxamide () nanofibers by a sheet-forming wet-laid process. The formation of an interpenetrating and entangled network of supramolecular nanofibers and PAN short fibers results in mechanically stable mesoscale nonwovens.
View Article and Find Full Text PDFCombining the unique corona structure of worm-like patchy micelles immobilized on a polymer fiber with the molecular self-assembly of 1,3,5-benzenetricarboxamides (BTAs) leads to hierarchical superstructures with a fir-tree-like morphology. For this purpose, worm-like patchy micelles bearing pendant, functional tertiary amino groups in one of the corona patches were prepared by crystallization-driven self-assembly and immobilized on a supporting polystyrene fiber by coaxial electrospinning. The obtained patchy fibers were then immersed in an aqueous solution of a tertiary amino-functionalized BTA to induce patch-mediated molecular self-assembly to well-defined fir-tree-like superstructures upon solvent evaporation.
View Article and Find Full Text PDFPolystyrene foams have become more and more important owing to their lightweight potential and their insulation properties. Progress in this field is expected to be realized by foams featuring a microcellular morphology. However, large-scale processing of low-density foams with a closed-cell structure and volume expansion ratio of larger than 10, exhibiting a homogenous morphology with a mean cell size of approximately 10 µm, remains challenging.
View Article and Find Full Text PDFWe present an analysis of dielectric spectra measured for a specially designed non-polymeric asymmetric binary glass former characterized by a large difference of the component's T (ΔT = 216 K). We cover the whole additive concentration range from 4% up to 90% (by mass). Two main relaxations α and α are identified, which are characterized by well separated time scales and are attributed to the dynamics associated with the high-T component (α) and the low-T component (α).
View Article and Find Full Text PDFGradient materials exist widely in natural living organisms, affording fascinating biological and mechanical properties. However, the synthetic gradient hydrogels are usually mechanically weak or only have relatively simple gradient structures. Here, we report on tough nanocomposite hydrogels with designable gradient network structure and mechanical properties by a facile post-photoregulation strategy.
View Article and Find Full Text PDFDue to their appealing properties such as high-temperature dimensional stability, chemical resistance, compressive strength and recyclability, new-generation foams based on engineering thermoplastics such as polyethylene terephthalate (PET) and polybutylene terephthalate (PBT) have been gaining significant attention. Achieving low-density foams without sacrificing the mechanical properties is of vital importance for applications in the field of transportation and construction, where sufficient compressive strength is desired. In contrast to numerous research studies on PET foams, only a limited number of studies on PBT foams and in particular, on extruded PBT foams are known.
View Article and Find Full Text PDFA series of high-Tg glass formers with Tg values varying between 347 and 390 K and molar masses in the range of 341 and 504 g mol-1 are investigated by dielectric spectroscopy. They are compared to paradigmatic reference systems. Differently polar side groups are attached to a rigid non-polar core unit at different positions.
View Article and Find Full Text PDFEfficient long-range energy transport along supramolecular architectures of functional organic molecules is a key step in nature for converting sunlight into a useful form of energy. Understanding and manipulating these transport processes on a molecular and supramolecular scale is a long-standing goal. However, the realization of a well-defined system that allows for tuning morphology and electronic properties as well as for resolution of transport in space and time is challenging.
View Article and Find Full Text PDFA series of three 1,3,5-benzenetricarboxamides with peripheral tertiary N,N-dialkyl-ethylamino substituents with different length of the alkyl groups is reported. In particular, the N,N,N-tris[2-(diethylamino)-ethyl]-1,3,5-benzenetricarboxamide exhibits phase separation followed by self-assembly upon heating from aqueous solution into well-defined supramolecular fiber-like structures in the form of microtubes.
View Article and Find Full Text PDFMacromol Rapid Commun
April 2020
In nature, animals such as chameleons are well-known for the complex color patterns of their skin and the ability to adapt and change the color by manipulating sophisticated photonic crystal systems. Artificial gradient photonic materials are inspired by these color patterns. A concept for the preparation of such materials and their function as tunable mechanochromic materials is presented in this work.
View Article and Find Full Text PDFChemistry "beyond the molecule" is based on weak, noncovalent, and reversible interactions. As a consequence of these bonds being weak, structural organization by folding and self-assembly can only be fully exploited with larger molecules that can provide multiple binding sites. Such "supramolecules" can now be synthesized and their folding into desired conformations predicted.
View Article and Find Full Text PDFThe glass transition temperature () of a molecular glass depends on its molar mass. However, the nature of intermolecular interactions also plays a major role in both the glass transition temperature and its glass-forming ability. In this context, we report on novel molecular glasses containing nitrile groups and investigate the influence of this highly polar group on and the glass-forming ability.
View Article and Find Full Text PDFAlignment of nanoparticles to hierarchical periodic structures is an emerging field in the development of patterned surfaces. Common alignment methods are based on templates that guide particle self-assembly. These can be formed using lithographic methods offering an almost free choice of the motif, while being expensive and time-consuming for large-scale production.
View Article and Find Full Text PDFLow thermal conductivity and adequate mechanical strength are desired for extruded polystyrene foams when they are applied as insulation materials. In this study, we improved the thermal insulation behavior and mechanical properties of extruded polystyrene foams through morphology control with the foam nucleating agent 1,3,5-benzene-trisamide. Furthermore, the structure⁻property relationships of extruded polystyrene foams were established.
View Article and Find Full Text PDFControlled wrinkling is a rather simple method of fabricating surface topographies. The production process is based on the spontaneous formation of wrinkles upon compression of a hard film attached to a soft elastic substrate. Controlled wrinkling typically features large-scale wrinkled samples with a discrete wavelength and amplitude.
View Article and Find Full Text PDF