Publications by authors named "Hans-Soenke Jans"

Theranostic isotope pairs have gained recent clinical interest because they can be labeled to the same tracer and applied for diagnostic and therapeutic purposes. The goals of this study were to investigate cyclotron production of clinically relevant La activities using natural and isotopically enriched barium target material, compare fundamental PET phantom imaging characteristics of La with those of common PET radionuclides, and demonstrate in vivo preclinical PET tumor imaging using La-PSMA-I&T. La was produced on a 24-MeV cyclotron using an aluminum-indium sealed target with 150-200 mg of isotopically enriched BaCO, BaCO, and Ba metal.

View Article and Find Full Text PDF

Targeted therapy is increasingly used to manage metastatic papillary thyroid cancer. The focus of the present study was to examine glucose metabolism and tumor responses for thyroid cancer xenografts expressing the glycolytic pathway modulators platelet-derived growth factor receptor (PDGFR) and BRAFV600E. Radiolabelled glucose derivative [18F]FDG was used to analyze the effects of PDGFR blockade with imatinib, BRAF blockade with vemurafenib, as well as combined PDGFR and BRAF blockade in vitro and in vivo with PET.

View Article and Find Full Text PDF

Purpose: Pharmacokinetic (PK) data are generally derived from blood samples withdrawn serially over a defined period after dosing. In small animals, blood sampling after dosing presents technical difficulties, particularly when short time intervals and frequent sampling are required. Positron emission tomography (PET) is a non-invasive functional imaging technique that can provide semi-quantitative temporal data for defined volume regions of interest (vROI), to support kinetic analyses in blood and other tissues.

View Article and Find Full Text PDF

Background: Prostate-specific membrane antigen (PSMA) is frequently overexpressed and upregulated in prostate cancer. To date, various (18)F- and (68)Ga-labeled urea-based radiotracers for PET imaging of PSMA have been developed and entered clinical trials. Here, we describe an automated synthesis of [(18)F]DCFPyL via direct radiofluorination and validation in preclinical models of prostate cancer.

View Article and Find Full Text PDF

The radiometal (64)Cu is now widely used in the development of diagnostic imaging agents for positron emission tomography (PET). The present study has led to the development and evaluation of a novel chelating agent for (64)Cu: the new monothiourea tripodal ligand 1-benzoyl-3-{6-[(bis-pyridin-2-ylmethyl-amino)-methyl]-pyridin-2-yl}-thiourea (MTUBo). X-ray crystallographic analysis has shown this ligand forms a mononuclear complex with copper(II) and co-ordinates via a trigonal bipyramidal N4S array of donor atoms.

View Article and Find Full Text PDF

Several F-18-labeled 2-nitroimidazole (azomycin) derivatives have been proposed for imaging hypoxia using positron emission tomography (PET). Their cell penetration is based on passive diffusion, which limits their intracellular concentration maxima. The purpose of this study was to investigate the uptake of N-(2-[(18)F]fluoro-3-(6-O-glucosyl)propyl-azomycin ([(18)F]F-GAZ), a new azomycin-glucose conjugate, in vitro and in vivo.

View Article and Find Full Text PDF

Introduction: Several clinical studies have shown low or no expression of GLUT1 in breast cancer patients, which may account for the low clinical specificity and sensitivity of 2-deoxy-2-[(18)F]fluoro-D-glucose ([(18)F]FDG) used in positron emission tomography (PET). Therefore, it has been proposed that other tumor characteristics such as the high expression of GLUT2 and GLUT5 in many breast tumors could be used to develop alternative strategies to detect breast cancer. Here we have studied the in vitro and in vivo radiopharmacological profile of 6-deoxy-6-[(18)F]fluoro-D-fructose (6-[(18)F]FDF) as a potential PET radiotracer to image GLUT5 expression in breast cancers.

View Article and Find Full Text PDF