Publications by authors named "Hans-Rudolf Wenk"

Understanding dynamics across phase transformations and the spatial distribution of minerals in the lower mantle is crucial for a comprehensive model of the evolution of the Earth's interior. Using the multigrain crystallography technique (MGC) with synchrotron x-rays at pressures of 30 GPa in a laser-heated diamond anvil cell to study the formation of bridgmanite [(Mg,Fe)SiO] and ferropericlase [(Mg,Fe)O], we report an interconnected network of a smaller grained ferropericlase, a configuration that has been implicated in slab stagnation and plume deflection in the upper part of the lower mantle. Furthermore, we isolated individual crystal orientations with grain-scale resolution, provide estimates on stress evolutions on the grain scale, and report {110} twinning in an iron-depleted bridgmanite, a mechanism that appears to aid stress relaxation during grain growth and likely contributes to the lack of any appreciable seismic anisotropy in the upper portion of the lower mantle.

View Article and Find Full Text PDF

The study of orientation variant selection helps to reveal the mechanism and dynamic process of martensitic transformations driven by temperature or pressure/stress. This is challenging due to the multiple variants which may coexist. While effects of temperature and microstructure in many martensitic transformations have been studied in detail, effects of stress and pressure are much less understood.

View Article and Find Full Text PDF

Crystallographic preferred orientation (CPO) of post-perovskite (Mg,Fe)SiO (pPv) has been believed to be one potential source of the seismic anisotropic layer at the bottom of the lower mantle (D″ layer). However, the natural CPO of pPv remains ambiguous in the D″ layer. Here we have carried out the deformation experiments of pPv-(Mg,Fe)SiO using synchrotron radial X-ray diffraction in a membrane-driven laser-heated diamond anvil cell from 135 GPa and 2,500 K to 154 GPa and 3,000 K.

View Article and Find Full Text PDF

The pyroclastic aggregate concrete of Trajan's Markets (110 CE), now Museo Fori Imperiali in Rome, has absorbed energy from seismic ground shaking and long-term foundation settlement for nearly two millenia while remaining largely intact at the structural scale. The scientific basis of this exceptional service record is explored through computed tomography of fracture surfaces and synchroton X-ray microdiffraction analyses of a reproduction of the standardized hydrated lime-volcanic ash mortar that binds decimeter-sized tuff and brick aggregate in the conglomeratic concrete. The mortar reproduction gains fracture toughness over 180 d through progressive coalescence of calcium-aluminum-silicate-hydrate (C-A-S-H) cementing binder with Ca/(Si+Al) ≈ 0.

View Article and Find Full Text PDF

To extend the range of high-temperature, high-pressure studies within the diamond anvil cell, a Liermann-type diamond anvil cell with radial diffraction geometry (rDAC) was redesigned and developed for synchrotron X-ray diffraction experiments at beamline 12.2.2 of the Advanced Light Source.

View Article and Find Full Text PDF

Synchrotron radiation X-ray tomographic microscopy (SRXTM) was used to characterize the three-dimensional microstructure, geometry and distribution of different phases in two shale samples obtained from the North Sea (sample N1) and the Upper Barnett Formation in Texas (sample B1). Shale is a challenging material because of its multiphase composition, small grain size, low but significant amount of porosity, as well as strong shape- and lattice-preferred orientation. The goals of this round-robin project were to (i) characterize microstructures and porosity on the micrometer scale, (ii) compare results measured at three synchrotron facilities, and (iii) identify optimal experimental conditions of high-resolution SRXTM for fine-grained materials.

View Article and Find Full Text PDF

The size of nanocrystals provides a limitation on dislocation activity and associated stress-induced deformation. Dislocation-mediated plastic deformation is expected to become inactive below a critical particle size, which has been proposed to be between 10 and 30 nanometers according to computer simulations and transmission electron microscopy analysis. However, deformation experiments at high pressure on polycrystalline nickel suggest that dislocation activity is still operative in 3-nanometer crystals.

View Article and Find Full Text PDF

Understanding deformation of mineral phases in the lowermost mantle is important for interpreting seismic anisotropy in Earth's interior. Recently, there has been considerable controversy regarding deformation-induced slip in MgSiO(3) post-perovskite. Here, we observe that (001) lattice planes are oriented at high angles to the compression direction immediately after transformation and before deformation.

View Article and Find Full Text PDF
Article Synopsis
  • A new resistive heated diamond anvil cell has been developed for studying materials under high pressure and temperature, featuring the ability to perform side diffraction.
  • The device can analyze polycrystalline samples up to 1100 K and 36 GPa, allowing researchers to explore lattice-preferred orientations.
  • Initial results show the instrument's effectiveness in observing texture development in various iron polymorphs during nonhydrostatic compression experiments.
View Article and Find Full Text PDF

We report a first combination of diamond anvil cell radial x-ray diffraction with in situ laser heating. The laser-heating setup of ALS beamline 12.2.

View Article and Find Full Text PDF

Polycrystalline (Mg(0.9),Fe(0.1))SiO3 post-perovskite was plastically deformed in the diamond anvil cell between 145 and 157 gigapascals.

View Article and Find Full Text PDF

The Rietveld method is used to extract quantitative texture information from a single synchrotron diffraction image of a CaSiO(3) perovskite sample deformed in axial compression in a diamond anvil cell. The image used for analysis was taken in radial geometry at 49 GPa and room temperature. We obtain a preferred orientation of {100} lattice planes oriented perpendicular to the compression direction and this is compatible with [Formula: see text] slip.

View Article and Find Full Text PDF

Polycrystalline MgGeO3 post-perovskite was plastically deformed in the diamond anvil cell between 104 and 130 gigapascals confining pressure and ambient temperature. In contrast with phenomenological considerations suggesting (010) as a slip plane, lattice planes near (100) became aligned perpendicular to the compression direction, suggesting that slip on (100) or (110) dominated plastic deformation. With the assumption that silicate post-perovskite behaves similarly at lower mantle conditions, a numerical model of seismic anisotropy in the D'' region implies a maximum contribution of post-perovskite to shear wave splitting of 3.

View Article and Find Full Text PDF

A Rietveld method is described which extracts information on crystal structure, texture and microstructure directly from two-dimensional synchrotron diffraction images. This is advantageous over conventional texture analysis that relies on individual diffraction peaks, particularly for low-symmetry materials with many overlapping peaks and images with a poor peak-to-background ratio. The method is applied to two mineralized biological samples with hydroxylapatite fabrics: an ossified pachycephalosaurid dinosaur tendon and an Atlantic salmon scale.

View Article and Find Full Text PDF