Publications by authors named "Hans-Peter E Kohler"

Oxygenation of aromatic and aliphatic hydrocarbons by Rieske oxygenases is the initial step of various biodegradation pathways for environmental organic contaminants. Microorganisms carrying Rieske oxygenases are able to quickly adapt their substrate spectra to alternative carbon and energy sources that are structurally related to the original target substrate, yet the molecular events responsible for this rapid adaptation are not well understood. Here, we evaluated the hypothesis that reactive oxygen species (ROS) generated by unproductive activation of O, the so-called O uncoupling, in the presence of the alternative substrate exert a selective pressure on the bacterium for increasing the oxygenation efficiency of Rieske oxygenases.

View Article and Find Full Text PDF

2,6-Dichlorobenzamide (BAM) is an omnipresent micropollutant in European groundwaters. MSH1 is a prime candidate for biologically treating BAM-contaminated groundwater since this organism is capable of utilizing BAM as a carbon and energy source. However, detailed information on the BAM degradation kinetics by MSH1 at trace concentrations is lacking, while this knowledge is required for predicting and optimizing the degradation process.

View Article and Find Full Text PDF

Using biodegradable instead of conventional plastics in agricultural applications promises to help overcome plastic pollution of agricultural soils. However, analytical limitations impede our understanding of plastic biodegradation in soils. Utilizing stable carbon isotope (C-)labelled poly(butylene succinate) (PBS), a synthetic polyester, we herein present an analytical approach to continuously quantify PBS mineralization to CO during soil incubations and, thereafter, to determine non-mineralized PBS-derived C remaining in the soil.

View Article and Find Full Text PDF

Oxygenations of aromatic soil and water contaminants with molecular O catalyzed by Rieske dioxygenases are frequent initial steps of biodegradation in natural and engineered environments. Many of these non-heme ferrous iron enzymes are known to be involved in contaminant metabolism, but the understanding of enzyme-substrate interactions that lead to successful biodegradation is still elusive. Here, we studied the mechanisms of O activation and substrate hydroxylation of two nitroarene dioxygenases to evaluate enzyme- and substrate-specific factors that determine the efficiency of oxygenated product formation.

View Article and Find Full Text PDF

Rieske dioxygenases catalyze the initial steps in the hydroxylation of aromatic compounds and are critical for the metabolism of xenobiotic substances. Because substrates do not bind to the mononuclear non-heme Fe center, elementary steps leading to O activation and substrate hydroxylation are difficult to delineate, thus making it challenging to rationalize divergent observations on enzyme mechanisms, reactivity, and substrate specificity. Here, we show for nitrobenzene dioxygenase, a Rieske dioxygenase capable of transforming nitroarenes to nitrite and substituted catechols, that unproductive O activation with the release of the unreacted substrate and reactive oxygen species represents an important path in the catalytic cycle.

View Article and Find Full Text PDF

Transformation studies of chlorinated paraffins (CPs) and the effects of CP transformation products on humans, biota and environment are rare. The focus here is on hydroxylation reactions. As for polyhalogenated persistent organic pollutants (POPs) in general, hydroxylation reactions convert lipophilic material to more polar compounds with increased mobility.

View Article and Find Full Text PDF

Structure, reactivity and physico-chemical properties of polyhalogenated compounds determine their up-take, transport, bio-accumulation, transformation and toxicity and their environmental fate. In technical mixtures of chlorinated paraffins (CPs), these properties are distributed due to the presence of thousands of homologues. We hypothesized that roles of CP dehalogenation reactions, catalyzed by the haloalkane dehalogenase LinB, depend on structural properties of the substrates, e.

View Article and Find Full Text PDF

Hexabromocyclododecanes (HBCDs) were used as flame-retardants until their ban in 2013. Among the 16 stereoisomers known, ε-HBCD has the highest symmetry. This makes ε-HBCD an interesting substrate to study the selectivity of biotransformations.

View Article and Find Full Text PDF

Short-chain chlorinated paraffins (SCCPs) are listed as persistent organic pollutants (POPs) under the Stockholm Convention. Such substances are toxic, bioaccumulating, transported over long distances and degrade slowly in the environment. Certain bacterial strains of the Sphingomonadacea family are able to degrade POPs, such as hexachlorocyclohexanes (HCHs) and hexabromocyclododecanes (HBCDs).

View Article and Find Full Text PDF

Enzymatic oxygenations initiate biodegradation processes of many organic soil and water contaminants. Even though many biochemical aspects of oxygenation reactions are well-known, quantifying rates of oxidative contaminant removal as well as the extent of oxygenation remains a major challenge. Because enzymes use different strategies to activate O₂, reactions leading to substrate oxygenation are not necessarily limiting the rate of contaminant removal.

View Article and Find Full Text PDF

Soil biodegradable mulch films composed of the polyester polybutylene adipate--terephthalate (PBAT) are being increasingly used in agriculture. Analytical methods to quantify PBAT in field soils are needed to assess its soil occurrence and fate. Here, we report an analytical method for PBAT in soils that couples Soxhlet extraction or accelerated solvent extraction (ASE) with quantitative protonnuclear magnetic resonance (q-H NMR) spectroscopy detection.

View Article and Find Full Text PDF

2,6-Dichlorobenzamide (BAM) is a major groundwater micropollutant posing problems for drinking water treatment plants (DWTPs) that depend on groundwater intake. sp. MSH1 uses BAM as the sole source of carbon, nitrogen, and energy and is considered a prime biocatalyst for groundwater bioremediation in DWTPs.

View Article and Find Full Text PDF

Contamination of soils and sediments with the highly persistent hexachlorocyclohexanes (HCHs) continues to be a threat for humans and the environment. Despite the existence of bacteria capable of biodegradation and cometabolic transformation of HCH isomers, such processes occur over time scales of decades and are thus challenging to assess. Here, we explored the use of compound-specific isotope analysis (CSIA) to track the aerobic biodegradation and biotransformation pathways of the most prominent isomers, namely, (-)-α-, (+)-α-, β-, γ-, and δ-HCH, through changes of their C and H isotope composition in assays of LinA2 and LinB enzymes.

View Article and Find Full Text PDF

Short-chain chlorinated paraffins (SCCPs) are polyhalogenated hydrocarbons as are hexachlorocyclohexanes (HCHs) and hexabromocyclododecanes (HBCDs). They all have been classified as persistent organic pollutants (POPs) under the UN Stockholm Convention. Per se such compounds are transformed slowly in the environment, transported over long distances and accumulate in biota.

View Article and Find Full Text PDF

Biodegradable polyesters are being increasingly used to replace conventional, nondegradable polymers in agricultural applications such as plastic film for mulching. For many of these applications, poly(butylene adipate- co-terephthalate) (PBAT) is a promising biodegradable material. However, PBAT is also susceptible to photochemical transformations.

View Article and Find Full Text PDF

Compound-specific isotope analysis (CSIA) can provide insights into the natural attenuation processes of hexachlorocyclohexanes (HCHs), an important class of persistent organic pollutants. However, the interpretation of HCH stable isotope fractionation is conceptually challenging. HCHs exist as different conformers that can be converted into each other, and the enzymes responsible for their transformation discriminate among those HCH conformers.

View Article and Find Full Text PDF

Plastic materials are widely used in agricultural applications to achieve food security for the growing world population. The use of biodegradable instead of nonbiodegradable polymers in single-use agricultural applications, including plastic mulching, promises to reduce plastic accumulation in the environment. We present a novel approach that allows tracking of carbon from biodegradable polymers into CO and microbial biomass.

View Article and Find Full Text PDF

Aminobacter sp. MSH1 uses the groundwater micropollutant 2,6-dichlorobenzamide (BAM) as sole source of carbon and energy. In the first step, MSH1 converts BAM to 2,6-dichlorobenzoic acid (2,6-DCBA) by means of the BbdA amidase encoded on the IncP-1β plasmid pBAM1.

View Article and Find Full Text PDF

LinB is a haloalkane dehalogenase found in Sphingobium indicum B90A, an aerobic bacterium isolated from contaminated soils of hexachlorocyclohexane (HCH) dumpsites. We showed that this enzyme also converts hexabromocyclododecanes (HBCDs). Here we give new insights in the kinetics and stereochemistry of the enzymatic transformation of δ-HBCD, which resulted in the formation of two pentabromocyclododecanols (PBCDols) as first- (P, P) and two tetrabromocyclododecadiols (TBCDdiols) as second-generation products (T, T).

View Article and Find Full Text PDF

Pinoresinol is a dimer of two β-β'-linked coniferyl alcohol molecules. It is both a plant defense molecule synthesized through the shikimic acid pathway and a representative of several β-β-linked dimers produced during the microbial degradation of lignin in dead plant material. Until now, little has been known about the bacterial catabolism of such dimers.

View Article and Find Full Text PDF

To optimize removal of organic micropollutants from the water cycle, understanding the processes during activated sludge treatment is essential. In this study, we hypothesize that aliphatic amines, which are highly abundant among organic micropollutants, are partly removed from the water phase in activated sludge through ion trapping in protozoa. In ion trapping, which has been extensively investigated in medical research, the neutral species of amine-containing compounds diffuse through the cell membrane and further into acidic vesicles present in eukaryotic cells such as protozoa.

View Article and Find Full Text PDF

We report a cluster of genes encoding two monooxygenases (SadA and SadB) and one FMN reductase (SadC) that enable Microbacterium sp. strain BR1 and other Actinomycetes to inactivate sulfonamide antibiotics. Our results show that SadA and SadC are responsible for the initial attack of sulfonamide molecules resulting in the release of 4-aminophenol.

View Article and Find Full Text PDF

Enzymatic oxygenations are among the most important biodegradation and detoxification reactions of organic pollutants. In the environment, however, such natural attenuation processes are extremely difficult to monitor. Changes of stable isotope ratios of aromatic pollutants at natural isotopic abundances serve as proxies for isotope effects associated with oxygenation reactions.

View Article and Find Full Text PDF