Publications by authors named "Hans-Josef Endres"

Chemical chain extenders (CEs) can be used to restore the properties of recycled low-molecular-weight polyethylene terephthalate (PET). The aim of this work is to investigate the influence of the type and concentration of the CEs Joncryl and pyromellitic dianhydride (PMDA) on the viscosity and other rheological properties with a unique combination of different methods based on industrial samples originating from recycled PET bottles and trays. The resulting chain-extended thermoplastics were characterized by a combination of differential scanning calorimetry, viscometry, cone plate rheometry, pyrolysis-gas chromatography-mass spectroscopy, optical photothermal infrared spectroscopy, C solid-state- and H NMR liquid spectroscopy, and size exclusion chromatography.

View Article and Find Full Text PDF

After cochlear implant (CI) insertion, there is a possibility of postoperative inflammation, which may involve proinflammatory markers such as interleukin-6. Detecting this inflammation promptly is crucial for administering anti-inflammatory drugs, if required. One potential method for detecting inflammation is using molecular imprinted polymers (MIPs).

View Article and Find Full Text PDF

Life cycle assessment (LCA) is an internationally standardized methodology to evaluate the potential environmental impacts of products and technologies and assists in lowering their negative environmental consequences. So far, extensive knowledge of LCA-their application and interpretation-is restricted to experts. However, the importance of LCA is increasing due to its application in business, environmental, and policy decision-making processes.

View Article and Find Full Text PDF

Biofilms form on any available surface and, depending on the characteristics of the material and the environmental conditions, biodegradation can take place. We compared the bacterial composition of polyhydroxybutyrate (PHB)-related biofilm communities from marine ex-situ and in-situ tests to assess the differences in diversity and abundance between these two biofilms. This comparison will help to better assess the transferability of tank tests to real-life scenarios.

View Article and Find Full Text PDF

Polyhydroxyalkanoates (PHA) are bio-based and biodegradable alternatives to conventional plastic types and have the potential to reduce the environmental impacts along the life cycle. In comparison to already established production routes for PHA (heterotrophic production) based on renewable feedstock like glucose (first generation feedstock), novel production routes, such as the photoautotrophic production of PHA based on CO as feedstock (third generation feedstock) could offer new perspectives with regard to the reduction in the environmental impacts. To quantify the environmental impacts of PHA produced via photoautotrophic and heterotrophic production pathways, life cycle assessment (LCA) methodology based on ISO 14040/44 was applied, thus conducting a first of its kind comparative study for PHA based on third generation feedstock.

View Article and Find Full Text PDF

In various countries, polyethylene terephthalate (PET) represents one of the plastics with a very high recycling rate. Since currently there is no analytical method enabling direct distinction between recycled PET (rPET) and virgin PET (vPET), there are various attempts to differentiate these materials indirectly. One of these approaches claims that the recycling of PET leads to polymer chain degradation, which is reflected in changed thermal, mechanical and crystalline properties, and testing of these properties can therefore be used to distinguish rPET and vPET.

View Article and Find Full Text PDF

Polymers and plastics play a very important part in the modern world and contribute to people's wellbeing and comfort. However, products made of them are contributing to land- and marine-based environmental pollution due to littering and other ways of emission, and therefore threaten ecosystems worldwide. However, waste management and responses by governments and the consumer differ strongly from country to country.

View Article and Find Full Text PDF

We have created a new architected material, which is both highly deformable and ultra-resistant to dynamic point loads. The bio-inspired metallic cellular structure (with an internal grid of large ceramic segments) is non-cuttable by an angle grinder and a power drill, and it has only 15% steel density. Our architecture derives its extreme hardness from the local resonance between the embedded ceramics in a flexible cellular matrix and the attacking tool, which produces high-frequency vibrations at the interface.

View Article and Find Full Text PDF
Bioplastics.

Adv Biochem Eng Biotechnol

July 2019

The number of newly developed bioplastics has increased sharply in recent years and innovative polymer materials are increasingly present on the plastics market. Bioplastics are not, however, a completely new kind of material, but rather a rediscovered class of materials within the familiar group of materials known as plastics. Therefore, existing knowledge from the plastics sector can and should be transferred to bioplastics in order to further increase their performance, material diversity and market penetration.

View Article and Find Full Text PDF