3-(2-Amino-4-methylthiazol-5-yl)propyl-substituted carbamoylguanidines are potent, subtype-selective histamine H receptor (HR) agonists, but their applicability as pharmacological tools to elucidate the largely unknown HR functions in the central nervous system (CNS) is compromised by their concomitant high affinity toward dopamine D-like receptors (especially to the DR). To improve the selectivity, a series of novel carbamoylguanidine-type ligands containing various heterocycles, spacers, and side residues were rationally designed, synthesized, and tested in binding and/or functional assays at H and D receptors. This study revealed a couple of selective candidates (among others and ), and the most promising ones were screened at several off-target receptors, showing good selectivities.
View Article and Find Full Text PDFThe enzyme butyrylcholinesterase (BChE) and the human cannabinoid receptor 2 (hCBR) represent promising targets for pharmacotherapy in the later stages of Alzheimer's disease. We merged pharmacophores for both targets into small benzimidazole-based molecules, investigated SARs, and identified several dual-acting ligands with a balanced affinity/inhibitory activity and an excellent selectivity over both hCBR and hAChE. A homology model for the hCBR was developed based on the hCBR crystal structure and used for molecular dynamics studies to investigate binding modes.
View Article and Find Full Text PDFPreviously, drugs were developed focusing on target affinity and selectivity. However, it is becoming evident that the drug-target residence time, related to the off-rate, is an important parameter for successful drug development. The residence time influences both the on-rate and overall effectiveness of drugs.
View Article and Find Full Text PDFWithin the last years, for several ligands, binding to G protein-coupled receptors or other target proteins, a binding of the ligand in two different orientations is described. One appropriate experimental technique to detect two different binding orientations is the crystallization of the ligand-protein-complex, but crystallization and subsequent X-ray analysis do not belong to the routine methods. By traditional competitive radioligand equilibrium binding assays, it is not possible to detect or to distinguish between two different binding orientations, but there is a possibility to identify two different binding orientations by performing kinetic competitive radioligand-binding assays.
View Article and Find Full Text PDFSeveral experimental techniques to analyse histamine receptors are available, e.g. pharmacological characterisation of known or new compounds by different types of assays or mutagenesis studies.
View Article and Find Full Text PDFInspired by VUF6884 (7-Chloro-11-(4-methylpiperazin-1-yl)dibenzo[b,f][1,4]oxazepine), reported as a dual H/H receptor ligand (pK: 8.11 (human HR (hHR)), 7.55 (human HR (hHR))), four known and 28 new oxazepine and related oxepine derivatives were synthesised and pharmacologically characterized at histamine receptors and selected aminergic GPCRs.
View Article and Find Full Text PDF2-Cyano-1-[4-(1H-imidazol-4-yl)butyl]-3-[2-(phenylsulfanyl)ethyl]guanidine (UR-PI376, 1) is a potent and selective agonist of the human histamine H4 receptor (hH4R). To gain information on the active conformation, we synthesized analogues of 1 with a cyclopentane-1,3-diyl linker. Affinities and functional activities were determined at recombinant hHxR (x: 1-4) subtypes on Sf9 cell membranes (radioligand binding, [(35)S]GTPγS, or GTPase assays) and in part in luciferase assays on human or mouse H4R (HEK-293 cells).
View Article and Find Full Text PDFDistinct diaminopyrimidines, for example, 4-(4-methylpiperazin-1-yl)-5,6-dihydrobenzo[h]quinazolin-2-amine are histamine H4 receptor (H4R) antagonists and show high affinity to the H4R, but only a moderate affinity to the histamine H1 receptor (H1R). Within previous studies it was shown that an aromatic side chain with a distinct distance to the basic amine and aromatic core is necessary for affinity to the human H1R (hH1R). Thus, a rigid aminopyrimidine with a tricyclic core was used as a lead structure.
View Article and Find Full Text PDFA pharmacophore model for butyrylcholinesterase (BChE) inhibitors was applied to a human cannabinoid subtype 2 receptor (hCB2 R) agonist and verified it as a first-generation lead for respective dual-acting compounds. The design, synthesis, and pharmacological evaluation of various derivatives led to the identification of aminobenzimidazoles as second-generation leads with micro- or sub-micromolar activities at both targets and excellent selectivity over hCB1 and AChE, respectively. Computational studies of the first- and second-generation lead structures by applying molecular dynamics (MD) on the active hCB2 R model, along with docking and MD on hBChE, has enabled an explanation of their binding profiles at the protein levels and opened the way for further optimization.
View Article and Find Full Text PDFFlavonoid glycosides are extensively metabolized to glucuronidated compounds after oral intake. Recently, a cleavage of quercetin glucuronides by β-glucuronidase has been found. To characterize the deglucuronidation reaction and its structural prerequisites among the flavonoid subtypes more precisely, four flavonol glucuronides with varying glucuronidation positions, five flavone 7-O-glucuronides with varying A- and B-ring substitution as well as one flavanone- and one isoflavone-7-O-glucuronide were analyzed in a human monocytic cell line.
View Article and Find Full Text PDFBioorg Med Chem Lett
March 2015
Histamine binds with high affinity to the human histamine H4 receptor (hH4R). We are the first to examine the complete binding pathway of histamine from the extracellular side to the orthosteric binding site of the hH4R by means of unconstrained molecular dynamic simulation. Furthermore, the simulations show that the positively charged amine moiety of the histamine interacts electrostatically with the highly conserved Asp(3.
View Article and Find Full Text PDFEight-armed poly(ethylene glycol) was functionalized with furyl and maleimide groups. The two macromonomers were cross-linked by Diels-Alder (DA) reactions and the degradation behavior of the formed hydrogels was investigated. UV spectroscopy showed that maleimide groups were subject to ring-opening hydrolysis above pH 5.
View Article and Find Full Text PDFIn Silico Pharmacol
December 2014
Purpose: It was shown by several experimental studies that some G protein coupled receptors (GPCR) are sensitive to sodium ions. Furthermore, mutagenesis studies or the determination of crystal structures of the adenosine A2A or δ-opioid receptor revealed an allosteric Na(+) binding pocket near to the highly conserved Asp(2.50).
View Article and Find Full Text PDFNaunyn Schmiedebergs Arch Pharmacol
March 2015
The recent resolution of G-protein-coupled receptor (GPCR) structures in complex with Na(+) bound to an allosteric modulatory site has renewed interest of the regulation of GPCRs by ions. Here, we summarise key data on ion modulation of GPCRs, obtained in pharmacological, crystallographic, mutagenesis and molecular modelling studies. We show that ion modulation is a highly complex process, involving not only cations but also, rather neglected until now, anions.
View Article and Find Full Text PDFSeveral aminergic GPCRs, e.g., the human histamine H3-receptor (hH3R) are sensitive to sodium ions.
View Article and Find Full Text PDFCombination of AChE inhibiting and histamine H3 receptor antagonizing properties in a single molecule might show synergistic effects to improve cognitive deficits in Alzheimer's disease, since both pharmacological actions are able to enhance cholinergic neurotransmission in the cortex. However, whereas AChE inhibitors prevent hydrolysis of acetylcholine also peripherally, histamine H3 antagonists will raise acetylcholine levels mostly in the brain due to predominant occurrence of the receptor in the central nervous system. In this work, we designed and synthesized two novel classes of tri- and tetracyclic nitrogen-bridgehead compounds acting as dual AChE inhibitors and histamine H3 antagonists by combining the nitrogen-bridgehead moiety of novel AChE inhibitors with a second N-basic fragment based on the piperidinylpropoxy pharmacophore with different spacer lengths.
View Article and Find Full Text PDFNaunyn Schmiedebergs Arch Pharmacol
March 2014
Astemizole, a H1R antagonist shows high affinity to the histamine H1 receptor but only a moderate affinity to the histamine H4 receptor. This study aims to modify the astemizole to keep high affinity to the histamine H1 receptor and to increase affinity to the histamine H4 receptor. Therefore, 13 astemizole-derived compounds and astemizole-JNJ7777120-derived hybrid compounds were synthesized and pharmacologically characterized at the histamine H1 and H4 receptors.
View Article and Find Full Text PDFSeveral experimental studies suggest that GPCR dimers or oligomers may play an important role in signal transduction. In 2011 the crystal structure of a hβ2R-Gαβγ-complex was published and crystal structures of GPCR dimers are known. But until now, no crystal structure of a GPCR dimer including the Gαβγ-complex is available.
View Article and Find Full Text PDFHistamine is a biogenic amine that exerts its biological effects as a neurotransmitter and local mediator via four histamine receptor (HR) subtypes (H(x)Rs) - H(1)R, H(2)R, H(3)R, and H(4)R - belonging to the superfamily of G-protein-coupled receptors (GPCRs). All four H(x)Rs exhibit pronounced differences in agonist and/or antagonist pharmacology among various species orthologs. The species differences constitute a problem for animal experiments and drug development.
View Article and Find Full Text PDFIn 2010, we predicted two models for the hβ(2)R-Gα(s) complex by combining the technique of homology modeling with a potential energy surface scan, since a complete crystal structure of the hβ(2)R-Gα(s) complex was not available. The crystal structure of opsin co-crystallized with part of the C-terminus of Gα (3DQB) was used as a template to model the hβ(2)R, whereas the crystal structure of Gα (1AZT) was used as a template to model Gα(s). Utilizing a potential energy surface scan between hβ(2)R and Gα(s), a six-dimensional potential energy surface was obtained.
View Article and Find Full Text PDFWe investigated whether cationic peptides that contain hydrophobic side chains were able to stabilize themselves via hydrophobic interactions between neighboring peptide molecules upon electrostatic binding to oppositely charged polyelectrolytes. The interaction mechanism was examined through a model system consisting of the anionic polyelectrolyte alginate and the cationic decapeptide ozarelix. The interaction resulted in the formation of highly ordered complexes that were noticeable upon visual inspection.
View Article and Find Full Text PDFBioorg Med Chem Lett
November 2011
In literature, a synergism between histamine H(1) and H(4) receptor is discussed. Furthermore, it was shown, that the combined application of mepyramine, a H(1) antagonist and JNJ7777120, a H(4) receptor ligand leads to a synergistic effect in the acute murine asthma model. Thus, the aim of this study was to develop new hybrid ligands, containing one H(1) and one H(4) pharmacophor, connected by an appropriate spacer, in order to address both, H(1)R and H(4)R.
View Article and Find Full Text PDFNumerous competitive radioligand binding studies revealed significant differences between human and guinea pig histamine H(1)-receptors (hH(1)R and gpH(1)R), e.g. for the partial H(1)R agonist phenoprodifen.
View Article and Find Full Text PDFNaunyn Schmiedebergs Arch Pharmacol
September 2011
Histamine H(1)-receptor agonists and antagonists exhibit affinity to the human histamine H(4)-receptor (hH(4)R). However, the pharmacological profiles between hH(1)R and hH(4)R exhibit similarities and differences. Since suprahistaprodifen and trifluoromethylphenylhistamine show significant affinity to hH(4)R, the aim of this study was to analyse a large number of new phenylhistamines, histaprodifens and phenoprodifens at hH(4)R to extend the pharmacological profile of these compound classes at hH(4)R.
View Article and Find Full Text PDFJ Comput Aided Mol Des
September 2010
The binding of (partial) agonists in the binding pocket of biogenic amine receptors induces a conformational change from the inactive to the active state of the receptors. There is only little knowledge about the binding pathways of ligands into binding pocket on molecular level. So far, it was not possible with molecular dynamic simulations to observe the ligand binding and receptor activation.
View Article and Find Full Text PDF