Publications by authors named "Hans-J Bidmon"

Molecular alterations underlying cerebral impairment in hyperammonemic disorders such as in hepatic encephalopathy (HE) are only poorly understood. Using transcriptomics and proteomics on brains of mice with systemic hyperammonemia resulting from knockout of hepatic glutamine synthetase (LGS-KO) we identified up to 214 genes and 34 proteins whose expressions were altered in brains of LGS-KO mice in a brain region-specific way. Differentially expressed genes were enriched for those related to oxidative stress, cell proliferation, heme metabolism and others.

View Article and Find Full Text PDF

Background & Aims: Cerebral oxidative stress plays an important role in the pathogenesis of hepatic encephalopathy (HE), but the underlying mechanisms are incompletely understood. Herein, we analyzed a role of heme oxygenase (HO)1, iron and NADPH oxidase 4 (Nox4) for the induction of oxidative stress and senescence in HE.

Methods: Gene and protein expression in human post-mortem brain samples was analyzed by gene array and western blot analysis.

View Article and Find Full Text PDF

Hepatic ammonia handling was analyzed in taurine transporter (TauT) KO mice. Surprisingly, hyperammonemia was present at an age of 3 and 12 months despite normal tissue integrity. This was accompanied by cerebral RNA oxidation.

View Article and Find Full Text PDF

The devastating consequences of hepatic failure include hepatic encephalopathy, a severe, life threatening impairment of neuronal function. Hepatic encephalopathy is caused by impaired hepatic clearance of NH. Cellular NH uptake is accomplished mainly by the Na,K,2Cl cotransporter.

View Article and Find Full Text PDF

To date, unequivocal neuroanatomical features have been demonstrated neither for sporadic nor for familial schizophrenia. Here, we investigated the neuroanatomical changes in a transgenic rat model for a subset of sporadic chronic mental illness (CMI), which modestly overexpresses human full-length, non-mutant Disrupted-in-Schizophrenia 1 (DISC1), and for which aberrant dopamine homeostasis consistent with some schizophrenia phenotypes has previously been reported. Neuroanatomical analysis revealed a reduced density of dopaminergic neurons in the substantia nigra and reduced dopaminergic fibres in the striatum.

View Article and Find Full Text PDF

Hepatic encephalopathy is a neuropsychiatric syndrome evolving from cerebral osmotic disturbances and oxidative/nitrosative stress. Ammonia, the main toxin of hepatic encephalopathy, triggers astrocyte senescence in an oxidative stress-dependent way. As miRNAs are critically involved in cell cycle regulation and their expression may be regulated by oxidative stress, we analysed, whether astrocyte senescence is a consequence of ammonia-induced miRNA expression changes.

View Article and Find Full Text PDF

Urea cycle defects and acute or chronic liver failure are linked to systemic hyperammonemia and often result in cerebral dysfunction and encephalopathy. Although an important role of the liver in ammonia metabolism is widely accepted, the role of ammonia metabolizing pathways in the liver for maintenance of whole-body ammonia homeostasis in vivo remains ill-defined. Here, we show by generation of liver-specific Gln synthetase (GS)-deficient mice that GS in the liver is critically involved in systemic ammonia homeostasis in vivo.

View Article and Find Full Text PDF

Hepatic encephalopathy (HE) is a frequent complication of liver cirrhosis and is due to a low-grade cerebral edema associated with oxidative/nitrosative stress. Recent reports suggest that cognitive impairment in cirrhotic patients may not resolve completely after an attack of manifest HE. As astrocyte dysfunction is central to the pathogenesis of HE and astrocytes are critically involved in synaptic plasticity, we tested for sustained impairment of astrocyte function by analyzing expression levels of senescence biomarkers in ammonia-treated cultured rat astrocytes and in postmortem brain samples from cirrhotic patients with or without HE.

View Article and Find Full Text PDF

The purpose of the present study was to determine whether a unilateral photothrombotic brain lesion induces bilateral ischemic tolerance towards a subsequent severe ischemia performed 5 days later. Severe ischemia was induced by transient (1h; t) or permanent (p) occlusion of the middle cerebral artery (MCAO). Rats were sacrificed 24h later.

View Article and Find Full Text PDF

Hepatic encephalopathy (HE) is seen as the clinical manifestation of a low grade cerebral edema with formation of reactive oxygen and nitrogen species (RNOS). Astrocyte swelling is a crucial event and in cultured astrocytes HE-relevant factors almost instantaneously induce the formation of RNOS. However, short term effects of ammonia, inflammatory cytokines and RNOS on the volume of astrocytes and other brain cells as well as the underlying mechanisms are largely unknown, although a pathogenic link between RNOS formation and swelling in HE has been proposed.

View Article and Find Full Text PDF

Purpose:   A disturbed balance between excitatory and inhibitory neurotransmission underlies epileptic activity, although reports concerning neurotransmitter systems involved remain controversial.

Methods:   We quantified densities of 15 receptors in neocortical biopsies from patients with pharmacoresistant focal temporal lobe epilepsy and autopsy controls, and searched for correlations between density alterations and clinical factors or the occurrence of spontaneous synaptic potentials in vitro.

Key Findings:   α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA), kainate, N-methyl-d-aspartate (NMDA), peripheral benzodiazepine, muscarinic (M)(1) , M(2) , nicotinic, α(1) , α(2h) , serotonin (5-HT)(1A) , and adenosine (A)(1) receptor densities were significantly altered in biopsies.

View Article and Find Full Text PDF

Ammonia is a major player in the pathogenesis of hepatic encephalopathy (HE) and affects astrocyte function by triggering a self-amplifying cycle between osmotic and oxidative stress. We recently demonstrated that hypoosmotic astrocyte swelling rapidly stimulates nitric oxide (NO) production and increases intracellular free Zn(2+) concentration ([Zn(2+)](i)). Here we report effects of ammonia on [Zn(2+)](i) homeostasis and NO synthesis.

View Article and Find Full Text PDF

TGR5 (Gpbar-1) is a membrane-bound bile acid receptor in the gastrointestinal tract and immune cells with pleiotropic actions. As shown in the present study, TGR5 is also expressed in astrocytes and neurons. Here, TGR5 may act as a neurosteroid receptor, which is activated by nanomolar concentrations of 5β-pregnan-3α-ol-20-one and micromolar concentrations of 5β-pregnan-3α-17α-21-triol-20-one and 5α-pregnan-3α-ol-20-one (allopregnanolone).

View Article and Find Full Text PDF

Unlabelled: Oxidative stress plays a major role in cerebral ammonia toxicity and the pathogenesis of hepatic encephalopathy (HE). As shown in this study, ammonia induces a rapid RNA oxidation in cultured rat astrocytes, vital mouse brain slices, and rat brain in vivo. Ammonia-induced RNA oxidation in cultured astrocytes is reversible and sensitive to MK-801, 1,2-Bis(o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid, apocynin, epigallocatechin gallate, and polyphenon 60, suggesting the involvement of N-methyl-D-aspartic acid (NMDA) receptor activation, Ca(2+), nicotinamide adenine dinucleotide phosphate, and reduced form (NADPH) oxidase-dependent oxidative stress.

View Article and Find Full Text PDF

Purpose: The astrocyte-specific glutamine synthetase (GS) plays a key role in glutamate recycling and Gamma-aminobutyric acid (GABA) metabolism. Changes in the expression or activity of GS have been proposed to contribute to epileptogenesis. The mechanisms or how and where GS may contribute to epilepsy is still a matter of discussion.

View Article and Find Full Text PDF

The role of NADPH oxidase (NOX) and the regulatory subunit p47(phox) for hypoosmotic ROS generation was studied in cultured rat astrocytes and brain slices of wilde type and p47(phox) knock-out mice. Cultured rat astrocytes express mRNAs encoding for the regulatory subunit p47(phox), NOX1, 2, and 4, and the dual oxidases (DUOX)1 and 2, but not NOX3. Hypoosmotic (205 mosmol/L) swelling of cultured astrocytes induced a rapid generation of ROS that was accompanied by serine phosphorylation of p47(phox) and prevented by the NADPH oxidase inhibitor apocynin.

View Article and Find Full Text PDF

Nitric-oxide-sensitive guanylyl cyclase (NO-sGC) plays a pivotal role in many second messenger cascades. Neurotransmission- and neuropathology-related changes in NO-sGC have been suggested. However, the cellular localization of NO-sGC in primate brains, including humans, remains unknown.

View Article and Find Full Text PDF

Protein tyrosine nitration may be relevant for the pathogenesis of hepatic encephalopathy (HE). Infections, sepsis, and trauma precipitate HE episodes. Recently, serum levels of tumor necrosis factor (TNF)-alpha were shown to correlate with severity of HE in chronic liver failure.

View Article and Find Full Text PDF

The inducible prostaglandin synthase, cyclooxygenase-2, is upregulated in response to cerebral ischemia and contributes to potentiation of oxidative injury. Cyclooxygenase-2 expression is regulated by retinoic acid receptors, which form heterodimers with vitamin D receptors and vitamin D. In addition, vitamin D has been reported to have neuroprotective qualities.

View Article and Find Full Text PDF

1alpha,25-(OH)(2)-vitamin-D(3) (1,25-D(3)) and 17beta-estradiol are both known to act neuroprotective in certain experimental in vitro and in vivo settings. We studied the effects of 1,25-D(3) or 17beta-estradiol or their combined application on heat shock protein-27 (HSP-27) distribution after focal cortical ischemia using the photothrombosis model. HSP-27 is a well-established marker of the cerebral oxidative stress response and a potent inhibitor of apoptosis.

View Article and Find Full Text PDF

Heat shock protein-27 (HSP-27) is an inducible stress response protein. It inhibits apoptotic cell death and is a reliable marker for oxidative stress. We studied the induction of HSP-27 in rat brains on days 1, 4 and 14 after repeated, pentylenetetrazole (PTZ)-induced seizures using immunohistochemisty.

View Article and Find Full Text PDF

Purpose: Heat shock protein-27 (HSP-27) belongs to the group of small heat shock proteins that become induced in response to various pathologic conditions. HSP-27 has been shown to protect cells and subcellular structures, particularly mitochondria, and serves as a carrier for estradiol. It is a reliable marker for tissues affected by oxidative stress.

View Article and Find Full Text PDF

In ischemic cerebral injuries a cascade of degenerative mechanisms, all participating in the development of oxidative stress, influence the condition of the tissue. The survival of viable tissue affected by secondary injury largely depends on the balance between endogenous protective mechanisms and the ongoing degenerative processes. The inducible enzyme, heme oxygenase-1 metabolizes and thus detoxifies free heme to the powerful endogenous antioxidants biliverdin and bilirubin therefore enhancing neuroprotection.

View Article and Find Full Text PDF

Soluble guanylyl cylase (sGC) has been identified for being a receptor for the gaseous transmitters nitric oxide and carbon monoxide. Currently four subunits alpha1, alpha2, beta1, and beta2 have been characterized. Heterodimers of alpha and beta-subunits as well as homodimers of the beta2-subunit are known to constitute functional sGC which use GTP to form cGMP a potent signal molecule in a multitude of second messenger cascades.

View Article and Find Full Text PDF

1alpha,25-(OH)(2)-vitamin D(3) (1,25-D(3)) and 17beta-estradiol are both known to act neuroprotectively in certain experimental in vitro and in vivo settings and it has been noted that both steroids lead to an upregulation of certain neurotrophic factors. Here, we studied the effects of 1alpha,25-(OH)(2)-vitamin D(3) or 17beta-estradiol or their combined application on heat shock protein-32 (HSP-32) distribution after focal cortical ischemia using the well established photothrombosis model. Heat shock protein-32 is a well-established marker of the cerebral oxidative stress response and contributes to neuroprotection by metabolising cytotoxic free heme to carbon monoxide, iron and biliverdin.

View Article and Find Full Text PDF