Front Pharmacol
March 2024
The development of bioconjugates for the targeted delivery of anticancer agents is gaining momentum after recent success of antibody drug conjugates (ADCs) in the clinic. Smaller format conjugates may have several advantages including better tumor penetration; however, cellular uptake and trafficking may be substantially different from ADCs. To fully leverage the potential of small molecule drug conjugates (SMDCs) with potent binding molecules mediating tumor homing, novel linker chemistries susceptible for efficient extracellular activation and payload release in the tumor microenvironment (TME) need to be explored.
View Article and Find Full Text PDFThe emerging field of small-molecule-drug conjugates (SMDCs) using small-molecule biomarker-targeted compounds for tumor homing may provide new perspectives for targeted delivery. Here, for the first time, we disclose the structure and the synthesis of VIP236, an SMDC designed for the treatment of metastatic solid tumors by targeting αvβ3 integrins and extracellular cleavage of the 7-ethyl camptothecin payload by neutrophil elastase in the tumor microenvironment. Imaging studies in the Lewis lung mouse model using an elastase cleavable quenched substrate showed pronounced elastase activity in the tumor.
View Article and Find Full Text PDFAntibody-drug conjugates (ADCs) are used to target cancer cells by means of antibodies directed to tumor-associated antigens, causing the incorporation of a cytotoxic payload into target cells. Here, we characterized the mode of action of ADC costing of a TWEAKR-specific monoclonal antibody conjugated to a small molecule kinesin spindle protein (KSP) inhibitor (KSPi). These TWEAKR-KSPi-ADCs showed strong efficacy in a TWEAKR expressing CT26 colon cancer model in mice.
View Article and Find Full Text PDFTo improve tumor selectivity of cytotoxic agents, we designed VIP236, a small molecule-drug conjugate consisting of an αβ integrin binder linked to a modified camptothecin payload (VIP126), which is released by the enzyme neutrophil elastase (NE) in the tumor microenvironment (TME). The tumor targeting and pharmacokinetics of VIP236 were studied in tumor-bearing mice by in vivo near-infrared imaging and by analyzing tumor and plasma samples. The efficacy of VIP236 was investigated in a panel of cancer cell lines in vitro, and in MX-1, NCI-H69, and SW480 murine xenograft models.
View Article and Find Full Text PDFIL3RA (CD123) is the alpha subunit of the interleukin 3 (IL-3) receptor, which regulates the proliferation, survival, and differentiation of hematopoietic cells. IL3RA is frequently expressed in acute myeloid leukemia (AML) and classical Hodgkin lymphoma (HL), presenting an opportunity to treat AML and HL with an IL3RA-directed antibody-drug conjugate (ADC). Here, we describe BAY-943 (IL3RA-ADC), a novel IL3RA-targeting ADC consisting of a humanized anti-IL3RA antibody conjugated to a potent proprietary kinesin spindle protein inhibitor (KSPi).
View Article and Find Full Text PDFSeveral antibody-drug conjugates (ADCs) have failed to achieve a sufficiently large therapeutic window in patients due to toxicity induced by unspecific payload release in the circulation or ADC uptake into healthy organs. Herein, we describe the successful engineering of ADCs consisting of novel linkers, which are efficiently and selectively cleaved by the tumor-associated protease legumain. ADCs generated via this approach demonstrate high potency and a preferential activation in tumors compared to healthy tissue, thus providing an additional level of safety.
View Article and Find Full Text PDFBoron neutron capture therapy (BNCT) allows the selective elimination of malignant tumor cells without affecting healthy tissue. Although this binary radiotherapy approach has been known for decades, BNCT failed to reach the daily clinics to date. One of the reasons is the lack of selective boron delivery agents.
View Article and Find Full Text PDFMany antibody-drug conjugates (ADCs) have failed to achieve a sufficient therapeutic window in clinical studies either due to target-mediated or off-target toxicities. To achieve an additional safety level, a new class of antibody-prodrug conjugates (APDCs) directed against different targets in solid tumors is here described. The tumor-associated lysosomal endopeptidase legumain with a unique cleavage sequence was utilized for APDC metabolism.
View Article and Find Full Text PDFThis work takes advantage of one of the hallmarks of cancer, that is, the presence of tumor infiltrating cells of the immune system and leukocyte-secreted enzymes, to promote the activation of an anticancer drug at the tumor site. The peptidomimetic integrin ligand cyclo(DKP-RGD) was found to accumulate on the surface of α β integrin-expressing human renal cell carcinoma 786-O cells. The ligand was conjugated to the anticancer drug paclitaxel through a Asn-Pro-Val (NPV) tripeptide linker, which is a substrate of neutrophil-secreted elastase.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
November 2018
The number of cytotoxic payload classes successfully employed in antibody-drug conjugates (ADCs) is still rather limited. The identification of ADC payloads with a novel mode of action will increase therapeutic options and potentially increase the therapeutic window. Herein, we describe the utilization of kinesin spindle protein inhibitors (KSPi) as a novel payload class providing highly potent ADCs against different targets, for instance HER-2 or TWEAKR/Fn14.
View Article and Find Full Text PDFAdenosine is known to be released under a variety of physiological and pathophysiological conditions to facilitate the protection and regeneration of injured ischemic tissues. The activation of myocardial adenosine A receptors (A Rs) has been shown to inhibit myocardial pathologies associated with ischemia and reperfusion injury, suggesting several options for new cardiovascular therapies. When full A R agonists are used, the desired protective and regenerative cardiovascular effects are usually overshadowed by unintended pharmacological effects such as induction of bradycardia, atrioventricular (AV) blocks, and sedation.
View Article and Find Full Text PDFC4.4A (LYPD3) has been identified as a cancer- and metastasis-associated internalizing cell surface protein that is expressed in non-small cell lung cancer (NSCLC), with particularly high prevalence in the squamous cell carcinoma (SCC) subtype. With the exception of skin keratinocytes and esophageal endothelial cells, C4.
View Article and Find Full Text PDFThe fibroblast growth factor receptor FGFR2 is overexpressed in a variety of solid tumors, including breast, gastric, and ovarian tumors, where it offers a potential therapeutic target. In this study, we present evidence of the preclinical efficacy of BAY 1187982, a novel antibody-drug conjugate (ADC). It consists of a fully human FGFR2 monoclonal antibody (mAb BAY 1179470), which binds to the FGFR2 isoforms FGFR2-IIIb and FGFR2-IIIc, conjugated through a noncleavable linker to a novel derivative of the microtubule-disrupting cytotoxic drug auristatin (FGFR2-ADC).
View Article and Find Full Text PDFThio-Ugi reactions are described as an excellent synthetic tool for the synthesis of sterically highly hindered endothiopeptides. S-Methylation and subsequent amidine formation can be carried out in an inter- as well as in an intramolecular fashion. The intramolecular approach allows the synthesis of the bottromycin ring system in a straightforward manner.
View Article and Find Full Text PDFArginine-pyrimidine conjugates represent a novel class of compounds that exhibits therapeutic and prophylactic activity in lethal infections by Gram-positive and Gram-negative bacteria without showing antibacterial activity in vitro.
View Article and Find Full Text PDF