cAMP-elevating agents such as the incretin hormone glucagon-like peptide-1 potentiate glucose-stimulated insulin secretion (GSIS) from pancreatic β-cells. However, a debate has existed since the 1970s concerning whether or not cAMP signaling is essential for glucose alone to stimulate insulin secretion. Here, we report that the first-phase kinetic component of GSIS is cAMP-dependent, as revealed through the use of a novel highly membrane permeable para-acetoxybenzyl (pAB) ester prodrug that is a bioactivatable derivative of the cAMP antagonist adenosine-3',5'-cyclic monophosphorothioate, Rp-isomer (Rp-cAMPS).
View Article and Find Full Text PDFGPR119 is a G protein-coupled receptor expressed on enteroendocrine L-cells that synthesize and secrete the incretin hormone glucagon-like peptide-1 (GLP-1). Although GPR119 agonists stimulate L-cell GLP-1 secretion, there is uncertainty concerning whether GLP-1 biosynthesis is under the control of GPR119. Here we report that GPR119 is functionally coupled to increased proglucagon (PG) gene expression that constitutes an essential first step in GLP-1 biosynthesis.
View Article and Find Full Text PDFInsulin secretion from pancreatic β cells is stimulated by glucagon-like peptide-1 (GLP-1), a blood glucose-lowering hormone that is released from enteroendocrine L cells of the distal intestine after the ingestion of a meal. GLP-1 mimetics (e.g.
View Article and Find Full Text PDFGlucose-stimulated insulin secretion (GSIS) from pancreatic β-cells is potentiated by cAMP-elevating agents, such as the incretin hormone glucagon-like peptide-1 (GLP-1), and cAMP exerts its insulin secretagogue action by activating both protein kinase A (PKA) and the cAMP-regulated guanine nucleotide exchange factor designated as Epac2. Although prior studies of mouse islets demonstrated that Epac2 acts via Rap1 GTPase to potentiate GSIS, it is not understood which downstream targets of Rap1 promote the exocytosis of insulin. Here, we measured insulin secretion stimulated by a cAMP analog that is a selective activator of Epac proteins in order to demonstrate that a Rap1-regulated phospholipase C-epsilon (PLC-ε) links Epac2 activation to the potentiation of GSIS.
View Article and Find Full Text PDFEpac2 is a cAMP-regulated guanine nucleotide exchange factor (cAMP-GEF) that is proposed to mediate stimulatory actions of the second messenger cAMP on mouse islet insulin secretion. Here we have used methods of islet perifusion to demonstrate that the acetoxymethyl ester (AM-ester) of an Epac-selective cAMP analog (ESCA) penetrates into mouse islets and is capable of potentiating both first and second phases of glucose-stimulated insulin secretion (GSIS). When used at low concentrations (1-10 μM), 8-pCPT-2'-O-Me-cAMP-AM activates Rap1 GTPase but exhibits little or no ability to activate protein kinase A (PKA), as validated in assays of in vitro PKA activity (phosphorylation of Kemptide), Ser (133) CREB phosphorylation status, RIP1-CRE-Luc reporter gene activity, and PKA-dependent AKAR3 biosensor activation.
View Article and Find Full Text PDFClinical studies demonstrate that combined administration of sulfonylureas with exenatide can induce hypoglycemia in type 2 diabetic subjects. Whereas sulfonylureas inhibit ß-cell K(ATP) channels by binding to the sulfonylurea receptor-1 (SUR1), exenatide binds to the GLP-1 receptor, stimulates ß-cell cAMP production and activates both PKA and Epac. In this study, we hypothesized that the adverse in vivo interaction of sulfonylureas and exenatide to produce hypoglycemia might be explained by Epac-mediated facilitation of K(ATP) channel sulfonylurea sensitivity.
View Article and Find Full Text PDFPotential insulin secretagogue properties of an acetoxymethyl ester of a cAMP analog (8-pCPT-2'-O-Me-cAMP-AM) that activates the guanine nucleotide exchange factors Epac1 and Epac2 were assessed using isolated human islets of Langerhans. RT-QPCR demonstrated that the predominant variant of Epac expressed in human islets was Epac2, although Epac1 was detectable. Under conditions of islet perifusion, 8-pCPT-2'-O-Me-cAMP-AM (10 microM) potentiated first- and second-phase 10 mM glucose-stimulated insulin secretion (GSIS) while failing to influence insulin secretion measured in the presence of 3 mM glucose.
View Article and Find Full Text PDFThe second messenger cAMP exerts powerful stimulatory effects on Ca(2+) signaling and insulin secretion in pancreatic beta-cells. Previous studies of beta-cells focused on protein kinase A (PKA) as a downstream effector of cAMP action. However, it is now apparent that cAMP also exerts its effects by binding to cAMP-regulated guanine nucleotide exchange factors (Epac).
View Article and Find Full Text PDFcAMP is involved in a wide variety of cellular processes that were thought to be mediated by protein kinase A (PKA). However, cAMP also directly regulates Epac1 and Epac2, guanine nucleotide-exchange factors (GEFs) for the small GTPases Rap1 and Rap2 (refs 2,3). Unfortunately, there is an absence of tools to discriminate between PKA- and Epac-mediated effects.
View Article and Find Full Text PDF