Publications by authors named "Hans W J de Looper"

Severe congenital neutropenia (SCN) patients are prone to develop myelodysplastic syndrome (MDS) or acute myeloid leukaemia (AML). Leukaemic progression of SCN is associated with the early acquisition of CSF3R mutations in haematopoietic progenitor cells (HPCs), which truncate the colony-stimulating factor 3 receptor (CSF3R). These mutant clones may arise years before MDS/AML becomes overt.

View Article and Find Full Text PDF

Mutations in ELANE cause severe congenital neutropenia (SCN), but how they affect neutrophil production and contribute to leukemia predisposition is unknown. Neutropenia is alleviated by CSF3 (granulocyte colony-stimulating factor) therapy in most cases, but dose requirements vary between patients. Here, we show that CD34+CD45+ hematopoietic progenitor cells (HPCs) derived from induced pluripotent stem cell lines from patients with SCN that have mutations in ELANE (n = 2) or HAX1 (n = 1) display elevated levels of reactive oxygen species (ROS) relative to normal iPSC-derived HPCs.

View Article and Find Full Text PDF

Severe congenital neutropenia (SCN) patients treated with CSF3/G-CSF to alleviate neutropenia frequently develop acute myeloid leukemia (AML). A common pattern of leukemic transformation involves the appearance of hematopoietic clones with CSF3 receptor () mutations in the neutropenic phase, followed by mutations in before AML becomes overt. To investigate how the combination of CSF3 therapy and and mutations contributes to AML development, we make use of mouse models, SCN-derived induced pluripotent stem cells (iPSCs), and SCN and SCN-AML patient samples.

View Article and Find Full Text PDF

Umbilical cord blood (CB) is a convenient and broadly used source of hematopoietic stem cells (HSCs) for allogeneic stem cell transplantation. However, limiting numbers of HSCs remain a major constraint for its clinical application. Although one feasible option would be to expand HSCs to improve therapeutic outcome, available protocols and the molecular mechanisms governing the self-renewal of HSCs are unclear.

View Article and Find Full Text PDF

MicroRNAs (miRNAs) serve as key post-transcriptional regulators of gene expression. Genetic variation in miRNAs and miRNA-binding sites may affect miRNA function and contribute to disease risk. Here, we investigated the extent to which variants within miRNA-related sequences could constitute a part of the functional variants involved in developing Alzheimer's disease (AD), using the largest available genome-wide association study of AD.

View Article and Find Full Text PDF

MicroRNAs (miRNAs) are small noncoding RNAs that serve as key regulators of gene expression. They have been shown to be involved in a wide range of biological processes including neurodegenerative diseases. Genetic variants in miRNAs or miRNA-binding sites on their target genes could affect miRNA function and contribute to disease risk.

View Article and Find Full Text PDF

Background: Genome-wide association studies enabled us to discover a large number of variants and genomic loci contributing to cardiovascular and metabolic disorders. However, because the vast majority of the identified variants are thought to merely be proxies for other functional variants, the causal mechanisms remain to be elucidated. We hypothesized that the part of the functional variants involved in deregulating cardiometabolic genes is located in microRNA (miRNA)-binding sites.

View Article and Find Full Text PDF

Interstrand crosslinks (ICLs) are toxic DNA lesions that cause severe genomic damage during replication, especially in Fanconi anemia pathway-deficient cells. This results in progressive bone marrow failure and predisposes to acute myeloid leukemia (AML). The molecular mechanisms responsible for these defects are largely unknown.

View Article and Find Full Text PDF

Objective: MicroRNAs (miRNAs) have been implicated in the regulation of cardiometabolic disorders. Given the crucial role of miRNAs in gene expression, genetic variation within miRNA genes is expected to affect miRNA function and substantially contribute to disease risk.

Methods: 2,320 variants in miRNA-encoding sequences were systematically retrieved, and their associations with 17 cardiometabolic traits/diseases were investigated, using genome-wide association studies (GWAS) on glycemic indices, anthropometric measures, lipid traits, blood pressure, coronary artery disease, and type 2 diabetes.

View Article and Find Full Text PDF

MicroRNAs (miRNAs) have the potential to regulate cellular differentiation programs; however, miRNA deficiency in primary hematopoietic stem cells (HSCs) results in HSC depletion in mice, leaving the question of whether miRNAs play a role in early-lineage decisions un-answered. To address this issue, we deleted Dicer1, which encodes an essential RNase III enzyme for miRNA biogenesis, in murine CCAAT/enhancer-binding protein α (C/EBPA)-positive myeloid-committed progenitors in vivo. In contrast to the results in HSCs, we found that miRNA depletion affected neither the number of myeloid progenitors nor the percentage of C/EBPA-positive progenitor cells.

View Article and Find Full Text PDF