Publications by authors named "Hans U Lutz"

This review focuses on the analysis and evaluation of the diverse senescence markers suggested to prime red blood cells (RBC) for clearance in humans. These tags develop in the course of biochemical and structural alterations accompanying RBC aging, as the decrease of activities of multiple enzymes, the gradual accumulation of oxidative damage, the loss of membrane in form of microvesicles, the redistribution of ions and alterations in cell volume, density, and deformability. The actual tags represent the penultimate galactosyl residues, revealed by desialylation of glycophorins, or the aggregates of the anion exchanger (band 3 protein) to which anti-galactose antibodies bind in the first and anti-band 3 naturally occurring antibodies (NAbs) in the second case.

View Article and Find Full Text PDF

Naturally occurring anti-band 3 antibodies (anti-band 3 NAbs) are directed against the 55-kDa chymotryptic fragment of the anion transport protein (band 3) of red blood cells (RBCs). They bind to senescent and oxidatively stressed RBCs and induce their selective clearance. These IgG NAbs exist at low concentrations, and have a weak affinity that prevents them from actively recruiting second binding sites.

View Article and Find Full Text PDF

It was a long way from the use of hyperimmune animal sera for the treatment of toxin-producing infections to the production of polyclonal, polyspecific human immunoglobulin preparations and the use of NAbs as therapeutic tools for autoimmune and inflammatory diseases. Some highlights of the development of knowledge in blood fractionation techniques, basic science and clinical wisdom are reviewed in this chapter. Proudly we mention the outstanding contribution of Swiss scientists and clinicians in the development of IVIG as clinical tool for some otherwise untreatable diseases or taking advantage of its low adverse event profile in long-term treatment of other chronic autoimmune and inflammatory diseases.

View Article and Find Full Text PDF

In sepsis death follows an excessive inflammatory response involving cytokines and complement that is activated primarily via the amplifying C3/C5 convertase. Excessive stimulation of complement amplification requires IgG-containing or F(ab')₂-containing immune complexes (IC) that capture dimeric C3b on one of their heavy chains or heavy chain fragments. The ability of IgG-IC to capture dimeric C3b by the Fab portion is dependent on an affinity for C3 within the Fab portion, but outside the antigen-binding region.

View Article and Find Full Text PDF

Germline-encoded naturally occurring autoantibodies (NAbs) developed about 400 to 450 million years ago to provide specificity for clearance ofbody waste in animals with 3 germ layers. Such NAbs became a necessity to selectively clear aged red blood cells (RBC) surviving 60 to 120 d in higher vertebrates. IgG NAbs to senescent RBC are directed to the most abundant integral membrane protein, the anion-transport protein or band 3 protein, but only bind firmly upon its oligomerization, which facilitates bivalent binding.

View Article and Find Full Text PDF

Hyperchromasia of the red blood cells (RBC), defined as an elevation of the hyperchromic subpopulation, has been described for various medical conditions. However, neither the association of hyperchromasia with an altered RBC membrane nor with other medical conditions has been investigated in a systematic way so far. Since the percentage of hyperchromic RBC is measured on a routine basis by many hematologic laboratories, we evaluated the predictive value of this parameter for the detection of RBC disorders.

View Article and Find Full Text PDF

Hyperglycaemia is well known to cause reductions in plasma Na(+) levels or even hyponatraemia due to an osmotically induced dilution of the interstitium and blood. It is, however, unclear whether this dilution is significantly counteracted by ion regulatory homeostatic mechanism(s) or not. Furthermore, the effects of moderate hyperglycaemia on other major ions are less well known.

View Article and Find Full Text PDF

Background: Cryohydrocytosis is an inherited dominant hemolytic anemia characterized by mutations in a transmembrane segment of the anion exchanger (band 3 protein). Transfection experiments performed in Xenopus oocytes suggested that these mutations may convert the anion exchanger into a non-selective cation channel. The present study was performed to characterize so far unexplored ion transport pathways that may render erythrocytes of a single cryohydrocytosis patient cation-leaky.

View Article and Find Full Text PDF

Membrane proteomics offers unprecedented possibilities to compare protein expression in health and disease leading potentially to the identification of markers, of targets for therapeutics and to a better understanding of disease mechanisms. From transfusion medicine to infectious diseases, from cardiovascular affections to diabetes, comparative proteomics has made a contribution to the identification of proteins unique to RBCs of patients with specific illnesses shedding light on possible RBC markers for systemic diseases. In this review we will provide a short overview of some of the main achievements obtained by comparative proteomics in the field of RBC-related local and systemic diseases and suggest some additional areas of RBCs research to which comparative proteomics approaches could be fruitfully applied or extended in combination with biochemical techniques.

View Article and Find Full Text PDF

Membrane proteomics is concerned with accurately and sensitively identifying molecules involved in cell compartmentalisation, including those controlling the interface between the cell and the outside world. The high lipid content of the environment in which these proteins are found often causes a particular set of problems that must be overcome when isolating the required material before effective HPLC-MS approaches can be performed. The membrane is an unusually dynamic cellular structure since it interacts with an ever changing environment.

View Article and Find Full Text PDF

We propose a key role for the glucose transporter 1 (GLUT1) in mediating the observed changes in the dielectric properties of human erythrocyte membranes as determined by dielectric spectroscopy. Cytochalasin B, a GLUT1 transport inhibitor, abolished the membrane capacitance changes in glucose-exposed red cells. Surprisingly, D-fructose, known to be transported primarily by GLUT5, exerted similar membrane capacitance changes at increasing D-fructose concentrations.

View Article and Find Full Text PDF

Antibodies with germline or close to germline configuration exist in vertebrates, and these so-called 'naturally occurring auto-antibodies' (NAb) are directed to self and altered self components. Such NAbs have been attracting increasing interest because several of them, including some in their recombinant forms, have therapeutic potential. Whereas a large number of IgM and IgG NAbs have tissue homeostatic roles, others modulate and regulate cellular and enzyme properties.

View Article and Find Full Text PDF

This Correspondence relates to "Alternative complement pathway in the pathogenesis of disease mediated by anti-neutrophil cytoplasmic autoantibodies" (Am J Pathol 2007, 170:52–64).

View Article and Find Full Text PDF

A systemic inflammatory response syndrome follows excessive complement amplification, but how complement amplification is stimulated is unknown. Immune complexes containing IgG (IgG-IC) rarely stimulate complement amplification in human plasma. IgG molecules doing so may have an affinity for C3 within their framework and therefore preferentially generate C3b(2)-IgG complexes, potent C3 convertase precursors.

View Article and Find Full Text PDF

The systemic inflammatory response syndrome (SIRS) is triggered by C5a generation following an excessive complement amplification, but it has remained unclear how complement amplification is stimulated. It is known that neutrophilic elastase can cleave IgG to F(ab')(2) and that F(ab')(2)-containing immune complexes (F(ab')(2)-IC) stimulate complement amplification together with an unidentified plasma factor. We show that absorption of plasma on F(ab')(2) from human IgG removed this factor and prevented F(ab')(2)-IC from stimulating complement amplification.

View Article and Find Full Text PDF

Several blood groups, including the LW-blood group were discovered in the first part of last century, but their biochemical characteristics and cellular functions have only more recently been elucidated. The LW-blood group, renamed ICAM-4 (CD242), is red cell specific and belongs to the intercellular adhesion molecule family. ICAM-4 binds to several integrin receptors on blood and endothelial cells and is thus able to form large cellular complexes containing red cells.

View Article and Find Full Text PDF

Immunoglobulins may have been developed in evolution to provide specificity for clearing body waste in the first animals with three germ layers. Tissue homeostasis in vertebrates comprises clearance of proteins released from lysed cells, elimination of altered plasma proteins, of senescent and apoptotic cells. Rather specific IgM and IgG naturally occurring antibodies (NAbs) to cytoplasmic and cytoskeletal proteins bind to proteins released from lysing cells and the IgG NAbs are slightly upregulated upon demand.

View Article and Find Full Text PDF

In this opinion paper, we suggest that the scheme of the complement system should be redrawn in order to better illustrate its potencies. This can be achieved by putting the amplification loop of the alternative complement pathway at the center of the complement system. This arrangement emphasizes that C3b molecules, generated by any pathway, can stimulate complement amplification.

View Article and Find Full Text PDF

The development of clinical treatment protocols usually relies on evidence-based guidelines that focus on randomized, controlled trials. For rare renal diseases, such stringent requirements can represent a significant challenge. Dense deposit disease (DDD; also known as membranoproliferative glomerulonephritis type II) is a prototypical rare disease.

View Article and Find Full Text PDF

Rosetting of Plasmodium falciparum-infected red blood cells (parasitized RBC [pRBC]) with uninfected RBC has been associated in many studies with malaria morbidity and is one form of cytoadherence observed with malarial parasites. Rosetting is serum dependent for many isolates of P. falciparum, including the strains FCR3S1.

View Article and Find Full Text PDF

In addition to transporting oxygen and carbon dioxide to and from the tissues, a range of other functions are attributed to red blood cells (RBCs) of vertebrates. Diseases compromising RBC performance in any of these functions warrant in-depth study. Furthermore, the human RBC is a vital host cell for the malaria parasite.

View Article and Find Full Text PDF