Targeted top-down strategies for genome reduction are considered to have a high potential for providing robust basic strains for synthetic biology and industrial biotechnology. Recently, we created a library of 26 genome-reduced strains of Corynebacterium glutamicum carrying broad deletions in single gene clusters and showing wild-type-like biological fitness. Here, we proceeded with combinatorial deletions of these irrelevant gene clusters in two parallel orders, and the resulting library of 28 strains was characterized under various environmental conditions.
View Article and Find Full Text PDFFor synthetic biology applications, a robust structural basis is required, which can be constructed either from scratch or in a top-down approach starting from any existing organism. In this study, we initiated the top-down construction of a chassis organism from Corynebacterium glutamicum ATCC 13032, aiming for the relevant gene set to maintain its fast growth on defined medium. We evaluated each native gene for its essentiality considering expression levels, phylogenetic conservation, and knockout data.
View Article and Find Full Text PDFAdenylyltransferases regulate glutamine synthetase activity in enterobacteria and actinomycetes such as Streptomyces coelicolor, Mycobacterium tuberculosis and Corynebacterium glutamicum. In this study the effects of a mutation of the glnE gene, coding for adenylyltransferase, on transcriptome and metabolome profiles of C. glutamicum was investigated.
View Article and Find Full Text PDFThe influence of acetohydroxy acid synthase (AHAS) on L-lysine production by Corynebacterium glutamicum was investigated. An AHAS with a deleted C-terminal domain in the regulatory subunit IlvN was engineered by truncating the ilvN gene. Compared to the wild-type AHAS, the newly constructed enzyme showed altered kinetic properties, i.
View Article and Find Full Text PDFThe effects of a deletion of the amtR gene, encoding the master regulator of nitrogen control in Corynebacterium glutamicum, were investigated by metabolome and transcriptome analyses. Compared to the wild type, different metabolite patterns were observed in respect to glycolysis, pentose phosphate pathway, citric acid cycle, and most amino acid pools. Not all of these alterations could be attributed to changes at the level of mRNA and must be caused by posttranscriptional regulatory processes.
View Article and Find Full Text PDFObjectives: Little is known about the radiation sensitivity of bile duct carcinomas. The current study was undertaken to prospectively assess the objective response rates in bile duct carcinomas treated with radiotherapy and razoxane.
Materials And Methods: Twenty-three patients with advanced cancer of the biliary tree were irradiated together with the radiosensitizer razoxane at a dose of 125 mg twice daily by mouth.
A series of experiments reported in the literature using fluxomics as an efficient functional genomics tool revealed that the L-lysine production of the Corynebacterium glutamicum strain MH20-22B correlates with the extent of intracellular NADPH supply. Some alternative metabolic engineering strategies to increase intracellular NADPH supply in the C. glutamicum strain DSM5715 were considered and finally the redirection of carbon flux through the pentose phosphate pathway with two NADPH generating enzymatic reactions was favored.
View Article and Find Full Text PDFAlthough Escherichia coli strain EC3132 possesses a chromosomally encoded sucrose metabolic pathway, its growth on low sucrose concentrations (5 mM) is unusually slow, with a doubling time of 20 h. In this report we describe the subcloning and further characterization of the corresponding csc genes and adjacent genes. The csc regulon comprises three genes for a sucrose permease, a fructokinase, and a sucrose hydrolase (genes cscB, cscK, and cscA, respectively).
View Article and Find Full Text PDF