We consider the counterpropagating interaction of a signal and a pump beam in a spun fiber and in a randomly birefringent fiber, the latter being relevant to optical telecommunication systems. On the basis of a geometrical analysis of the Hamiltonian singularities of the system, we provide a complete understanding of the phenomenon of polarization attraction in these two systems, which allows to achieve a control of the polarization state of the signal beam by adjusting the polarization of the pump. In spun fibers, all polarization states of the signal beam are attracted toward a specific line of polarization states on the Poincaré sphere, whose characteristics are determined by the polarization state of the injected backward pump.
View Article and Find Full Text PDFThe effect of the pump waves misalignment on the oscillation spectra and oscillation intensity of a semilinear photorefractive oscillator is studied numerically and compared with the results of the experiment performed with a KNbO3:Fe,Ag crystal.
View Article and Find Full Text PDFWe show that the introduction of an angular mismatch for the pump waves results, in the case of nonlocal photorefractive nonlinearity, in a strong almost twofold decrease of the threshold value of the coupling strength for the mirrorless optical oscillation. This surprising feature will lead to a strong modification of the threshold and near-threshold behavior of a vast variety of optical oscillators based on the photorefractive phase conjugation and involving finite-size light beams.
View Article and Find Full Text PDFIt is shown that the saw-tooth variation of the cavity length in a photorefractive semilinear coherent oscillator can suppress the instability in the frequency domain and prevent a bifurcation in the oscillation spectrum. To achieve such a suppression the frequency of the cavity length modulation should be chosen appropriately. It depends on the photorefractive crystal parameters (electrooptic properties, photoconductivity, dimensions) and on the experimental conditions (pump intensity ratio, orientation of the pump and oscillation waves with respect to the crystallographic axes, polarization of the pump waves, etc.
View Article and Find Full Text PDF