The commentary by Colombo and Rich recently published in Cancer Cell provides a timely and comprehensive review of the clinical maximum tolerated doses (MTDs) of antibody-drug conjugates (ADCs) and their corresponding small molecules/chemotherapies. The authors identified similarities between their MTDs and therefore question the historic assumptions made for ADCs, namely, that they increase the MTDs of their corresponding cytotoxic molecules. However, the authors did not address the superior anti-tumor responses of ADCs compared to their corresponding chemotherapies, as reported in clinical trials.
View Article and Find Full Text PDFpHLA complexes represent the largest class of cell surface markers on cancer cells, making them attractive for targeted cancer therapies. Adoptive cell therapies expressing TCRs that recognize tumor specific pHLAs take advantage of the unique selectivity and avidity of TCR: pHLA interactions. More recently, additional protein binding domains binding to pHLAs, known as TCR mimics (TCRm), were developed for tumor targeting of high potency therapeutic modalities, including bispecifics, ADCs, CAR T and -NK cells.
View Article and Find Full Text PDFExtra domain B splice variant of fibronectin (EDB+FN) is an extracellular matrix protein (ECM) deposited by tumor-associated fibroblasts, and is associated with tumor growth, angiogenesis, and invasion. We hypothesized that EDB+FN is a safe and abundant target for therapeutic intervention with an antibody-drug conjugate (ADC). We describe the generation, pharmacology, mechanism of action, and safety profile of an ADC specific for EDB+FN (EDB-ADC).
View Article and Find Full Text PDFAberrant NOTCH3 signaling and overexpression is oncogenic, associated with cancer stem cells and drug resistance, yet therapeutic targeting remains elusive. Here, we develop NOTCH3-targeted antibody drug conjugates (NOTCH3-ADCs) by bioconjugation of an auristatin microtubule inhibitor through a protease cleavable linker to two antibodies with differential abilities to inhibit signaling. The signaling inhibitory antibody rapidly induces ligand-independent receptor clustering and internalization through both caveolin and clathrin-mediated pathways.
View Article and Find Full Text PDFPurpose: Mortality due to acute myeloid leukemia (AML) remains high, and the management of relapsed or refractory AML continues to be therapeutically challenging. The reapproval of Mylotarg, an anti-CD33-calicheamicin antibody-drug conjugate (ADC), has provided a proof of concept for an ADC-based therapeutic for AML. Several other ADCs have since entered clinical development of AML, but have met with limited success.
View Article and Find Full Text PDFThe approval of ado-trastuzumab emtansine (T-DM1) in HER2 metastatic breast cancer validated HER2 as a target for HER2-specific antibody-drug conjugates (ADC). Despite its demonstrated clinical efficacy, certain inherent properties within T-DM1 hamper this compound from achieving the full potential of targeting HER2-expressing solid tumors with ADCs. Here, we detail the discovery of PF-06804103, an anti-HER2 ADC designed to have a widened therapeutic window compared with T-DM1.
View Article and Find Full Text PDFThe ideal cancer target antigen (Ag) is expressed at high copy numbers on neoplastic cells, absent on normal tissues, and contributes to the survival of cancer cells. Despite significant investments in the identification of cell surface Ags, there is a paucity of targets that meet such ideal cancer target criteria. Recent clinical trials in patients with cancer treated with immune checkpoint inhibitors (ICIs) indicate that cluster of differentiation (CD)8 T cells, by means of their T cell receptors (TCRs) recognizing intracellular targets presented as peptides in the context of human leukocyte antigen (peptide-human leukocyte antigen complex; pHLA) molecules on tumor cells, can mediate deep and long-lasting antitumor responses in patients with solid tumors.
View Article and Find Full Text PDFHigh-potency oncology compounds such as antibody- drug conjugates, T cell redirecting, and CAR-T cell therapies have provided transformational responses in patients with liquid tumors. However, they delivered only limited benefit to solid tumor patients due to the frequent onset of dose limiting toxicities in normal tissues. Such on-target, off-tumor toxicities are caused by recognition of targets present at low-levels on normal tissues.
View Article and Find Full Text PDFStrong evidence exists supporting the important role T cells play in the immune response against tumors. Still, the ability to initiate tumor-specific immune responses remains a challenge. Recent clinical trials suggest that bispecific antibody-mediated retargeted T cells are a promising therapeutic approach to eliminate hematopoietic tumors.
View Article and Find Full Text PDFTrastuzumab emtansine (T-DM1) is an antibody-drug conjugate (ADC) that has demonstrated clinical benefit for patients with HER2 metastatic breast cancer; however, its clinical activity is limited by inherent or acquired drug resistance. The molecular mechanisms that drive clinical resistance to T-DM1, especially in HER2 tumors, are not well understood. We used HER2 cell lines to develop models of T-DM1 resistance using a cyclical dosing schema in which cells received T-DM1 in an "on-off" routine until a T-DM1-resistant population was generated.
View Article and Find Full Text PDFThe fetal oncogene 5T4 is a cell surface protein, with overexpression observed in a variety of cancers as compared to normal adult tissue. The ability to select patients with tumors that express high levels of 5T4 may enrich a clinical trial cohort with patients most likely to respond to 5T4 targeted therapy. To that end, we developed assays to measure 5T4 in both tumors and in circulating tumor cells (CTCs).
View Article and Find Full Text PDFAs the antibody drug conjugate (ADC) community continues to shift towards site-specific conjugation technology, there is a growing need to understand how the site of conjugation impacts the biophysical and biological properties of an ADC. In order to address this need, we prepared a carefully selected series of engineered cysteine ADCs and proceeded to systematically evaluate their potency, stability, and PK exposure. The site of conjugation did not have a significant influence on the thermal stability and in vitro cytotoxicity of the ADCs.
View Article and Find Full Text PDFDisease relapse after treatment is common in triple-negative breast cancer (TNBC), ovarian cancer (OVCA), and non-small cell lung cancer (NSCLC). Therapies that target tumor-initiating cells (TICs) should improve patient survival by eliminating the cells that can drive tumor recurrence and metastasis. We demonstrate that protein tyrosine kinase 7 (PTK7), a highly conserved but catalytically inactive receptor tyrosine kinase in the Wnt signaling pathway, is enriched on TICs in low-passage TNBC, OVCA, and NSCLC patient-derived xenografts (PDXs).
View Article and Find Full Text PDFDrug resistance limits the effectiveness of cancer therapies. Despite attempts to develop curative anticancer treatments, tumors evolve evasive mechanisms limiting durable responses. Hence, diverse therapies are used to attack cancer, including cytotoxic and targeted agents.
View Article and Find Full Text PDFAdverse reactions reported in patients treated with antibody-calicheamicin conjugates such as gemtuzumab ozogamicin (Mylotarg) and inotuzumab ozogamicin include thrombocytopenia and sinusoidal obstruction syndrome (SOS). The objective of this experimental work was to investigate the mechanism for thrombocytopenia, characterize the liver injury, and identify potential safety biomarkers. Cynomolgus monkeys were dosed intravenously at 6 mg/m/dose once every 3 weeks with a nonbinding antibody-calicheamicin conjugate (PF-0259) containing the same linker-payload as gemtuzumab ozogamicin and inotuzumab ozogamicin.
View Article and Find Full Text PDFThere is a considerable ongoing work to identify new cytotoxic payloads that are appropriate for antibody-based delivery, acting via mechanisms beyond DNA damage and microtubule disruption, highlighting their importance to the field of cancer therapeutics. New modes of action will allow a more diverse set of tumor types to be targeted and will allow for possible mechanisms to evade the drug resistance that will invariably develop to existing payloads. Spliceosome inhibitors are known to be potent antiproliferative agents capable of targeting both actively dividing and quiescent cells.
View Article and Find Full Text PDFBispecific antibodies offer a promising approach for the treatment of cancer but can be challenging to engineer and manufacture. Here we report the development of PF-06671008, an extended-half-life dual-affinity re-targeting (DART) bispecific molecule against P-cadherin and CD3 that demonstrates antibody-like properties. Using phage display, we identified anti-P-cadherin single chain Fv (scFv) that were subsequently affinity-optimized to picomolar affinity using stringent phage selection strategies, resulting in low picomolar potency in cytotoxic T lymphocyte (CTL) killing assays in the DART format.
View Article and Find Full Text PDFBiochem Pharmacol
February 2016
Blockade of immune-checkpoints has emerged as one of the most promising approaches to improve the durability of anti-tumor responses in cancer patients. However, the fraction of patients experiencing durable responses to single agent immune checkpoint inhibitor treatment remains limited. Recent clinical reports suggest that patients responding best to checkpoint blockade therapies display higher levels of CD8(+) T-cells in the tumor prior to treatment.
View Article and Find Full Text PDFPurpose: Triple-negative breast cancer (TNBC) and ovarian cancer each comprise heterogeneous tumors, for which current therapies have little clinical benefit. Novel therapies that target and eradicate tumor-initiating cells (TIC) are needed to significantly improve survival.
Experimental Design: A panel of well-annotated patient-derived xenografts (PDX) was established, and surface markers that enriched for TIC in specific tumor subtypes were empirically determined.
Antibody-drug conjugates (ADC) are emerging as clinically effective therapy. We hypothesized that cancers treated with ADCs would acquire resistance mechanisms unique to immunoconjugate therapy and that changing ADC components may overcome resistance. Breast cancer cell lines were exposed to multiple cycles of anti-Her2 trastuzumab-maytansinoid ADC (TM-ADC) at IC80 concentrations followed by recovery.
View Article and Find Full Text PDFCalicheamicin is a DNA-damaging agent that, following intracellular activation, binds to DNA in the minor groove and introduces double-strand DNA breaks, leading to G2/M arrest and subsequent cell death. Importantly, the mechanism of action of calicheamicin is fundamentally different from the tubulin-binding class of cytotoxics targeting the mitotic spindle, which represent the most common class of payloads for antibody-drug conjugates (ADCs) currently undergoing clinical development. Spindle poisons that target tubulin, including auristatins and maytansines, are most effective against rapidly proliferating cells.
View Article and Find Full Text PDFMost oncology compounds entering clinical development have passed stringent preclinical pharmacology evaluation criteria. However, only a small fraction of experimental agents induce meaningful antitumor activities in the clinic. Low predictability of conventional preclinical pharmacology models is frequently cited as a main reason for the unusually high clinical attrition rates of therapeutic compounds in oncology.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
February 2014
Using an expanded genetic code, antibodies with site-specifically incorporated nonnative amino acids were produced in stable cell lines derived from a CHO cell line with titers over 1 g/L. Using anti-5T4 and anti-Her2 antibodies as model systems, site-specific antibody drug conjugates (NDCs) were produced, via oxime bond formation between ketones on the side chain of the incorporated nonnative amino acid and hydroxylamine functionalized monomethyl auristatin D with either protease-cleavable or noncleavable linkers. When noncleavable linkers were used, these conjugates were highly stable and displayed improved in vitro efficacy as well as in vivo efficacy and pharmacokinetic stability in rodent models relative to conventional antibody drug conjugates conjugated through either engineered surface-exposed or reduced interchain disulfide bond cysteine residues.
View Article and Find Full Text PDFObjectives of the present investigation were: (1) to compare three literature reported tumor growth inhibition (TGI) pharmacodynamic (PD) models and propose an optimal new model that best describes the xenograft TGI data for antibody drug conjugates (ADC), (2) to translate efficacy of the ADC Trastuzumab-emtansine (T-DM1) from mice to patients using the optimized PD model, and (3) to apply the translational strategy to predict clinically efficacious concentrations of a novel in-house anti-5T4 ADC, A1mcMMAF. First, the performance of all four of the PD models (i.e.
View Article and Find Full Text PDF