Publications by authors named "Hans P L Steenackers"

Article Synopsis
  • * The study reveals that the antimicrobial activity of GA is enhanced as the pH decreases, with fully protonated GA (at pH = 3) being effective against certain bacteria, while other strains are inhibited at higher pH levels.
  • * Results show that the increased antimicrobial activity of GA hydrogels is due to GA's release into the suspension, interacting directly with bacteria, and the variations in activity are linked to the protonation state of GA rather than just
View Article and Find Full Text PDF

The increased tolerance of biofilms against disinfectants and antibiotics has stimulated research into new methods of biofilm prevention and eradication. In our previous work, we have identified the 5-aryl-2-aminoimidazole core as a scaffold that demonstrates preventive activity against biofilm formation of a broad range of bacterial and fungal species. Inspired by the dimeric nature of natural 2-aminoimidazoles of the oroidin family, we investigated the potential of dimers of our decorated 5-aryl-2-aminoimidazoles as biofilm inhibitors.

View Article and Find Full Text PDF

Most of the human bacterial infections are associated with the biofilm formation and the natural tolerance of biofilms to antibiotics challenges treatment. Because of their low immunity, cancer patients are especially susceptible to bacterial infections. Compounds with anti-biofilm activity could therefore become a useful adjunct to chemotherapy, in particular if they also show antiproliferative activities.

View Article and Find Full Text PDF

A screening of a small-molecule library was conducted, in search of Salmonella biofilm inhibitors active in a broad temperature range, both in prevention and in eradication of biofilms. Moreover, the inhibitors were selected not to influence the planktonic growth of Salmonella to diminish the selective pressure and to prevent or slow down resistance development. Out of the 20,014 compounds screened at 16 and 37 °C, 140 hits were identified.

View Article and Find Full Text PDF

A library of 80 1-substituted 2-hydroxy-2-aryl-2,3-dihydro-imidazo[1,2-a]pyrimidinium salts and 54 2N-substituted 4(5)-aryl-2-amino-1H-imidazoles was synthesized and tested for the antagonistic effect against biofilm formation by Salmonella Typhimurium and Pseudomonas aeruginosa. The nature of the substituent at the 1-position of the salts was found to have a major effect on their biofilm inhibitory activity. Salts with an intermediate length n-alkyl or cyclo-alkyl chain (C7-C10) substituted at the 1-position in general prevented the biofilm formation of both species at low micromolar concentrations, while salts with a shorter n-alkyl or cyclo-alkyl chain (C1-C5) or longer n-alkyl chain (C11-C14) were much less potent.

View Article and Find Full Text PDF
Article Synopsis
  • A library of various imidazole compounds was synthesized and tested for their ability to inhibit biofilm formation in Salmonella Typhimurium and Pseudomonas aeruginosa.
  • The substitution patterns of the 4(5)-phenyl groups and N1-position were important in determining the effectiveness of the compounds, with some showing significant activity at low concentrations.
  • The study also explored related compounds, finding that while imidazo[1,2-a]pyrimidinium salts showed potential for biofilm inhibition, their precursors (imidazo[1,2-a]pyrimidines) did not demonstrate any inhibitory effects.
View Article and Find Full Text PDF