Publications by authors named "Hans Martin Kauffmann"

'Omics technologies are gaining importance to support regulatory toxicity studies. Prerequisites for performing 'omics studies considering GLP principles were discussed at the European Centre for Ecotoxicology and Toxicology of Chemicals (ECETOC) Workshop Applying 'omics technologies in Chemical Risk Assessment. A GLP environment comprises a standard operating procedure system, proper pre-planning and documentation, and inspections of independent quality assurance staff.

View Article and Find Full Text PDF

Prevailing knowledge gaps in linking specific molecular changes to apical outcomes and methodological uncertainties in the generation, storage, processing, and interpretation of 'omics data limit the application of 'omics technologies in regulatory toxicology. Against this background, the European Centre for Ecotoxicology and Toxicology of Chemicals (ECETOC) convened a workshop Applying 'omics technologies in chemicals risk assessment that is reported herein. Ahead of the workshop, multi-expert teams drafted frameworks on best practices for (i) a Good-Laboratory Practice-like context for collecting, storing and curating 'omics data; (ii) the processing of 'omics data; and (iii) weight-of-evidence approaches for integrating 'omics data.

View Article and Find Full Text PDF

The aryl hydrocarbon receptor (AhR) mediates biological and toxicological actions of e.g., halogenated aromatic hydrocarbons such as 2,3,7,8-tetrachlorodibenzo-p-dioxin.

View Article and Find Full Text PDF

The human 190 kDa multidrug resistance protein, MRP1, is a polytopic membrane glycoprotein that confers resistance to a wide range of chemotherapeutic agents. It also transports structurally diverse conjugated organic anions, as well as certain unconjugated and conjugated compounds, in a reduced glutathione-stimulated manner. In this study, we characterized a low-frequency (<1%) naturally occurring mutation in MRP1 expected to cause the substitution of a conserved arginine with serine at position 433 in a predicted cytoplasmic loop of the protein.

View Article and Find Full Text PDF

In the present study, we investigated the inducibility of the drug conjugate transporter genes MRP1 and MRP2 by redox-active compounds such as tertiary butylated hydroquinone (tBHQ) and quercetin and by chemicals known to activate the pregnane X receptor (PXR) such as rifampicin and clotrimazol and by the metalloid compound arsenite. The human MRP2 gene was found to be inducible in HepG2 cells by rifampicin, clotrimazol, arsenite and tBHQ. As MRP1 expression is extremely low in HepG2 cells, its inducibility was studied in MCF-7 cells.

View Article and Find Full Text PDF