Publications by authors named "Hans Lievens"

Precipitation in mountain regions is highly variable and poorly measured, posing important challenges to water resource management. Traditional methods to estimate precipitation include in-situ gauges, Doppler weather radars, satellite radars and radiometers, numerical modeling and reanalysis products. Each of these methods is unable to adequately capture complex orographic precipitation.

View Article and Find Full Text PDF

The main objective of this article is to develop a physically constrained support vector machine (SVM) to predict C-band backscatter over snow-covered terrain as a function of geophysical inputs that reasonably represent the relevant characteristics of the snowpack. Sentinel-1 observations, in conjunction with geophysical variables from the Noah-MP land surface model, were used as training targets and input datasets, respectively. Robustness of the SVM prediction was analyzed in terms of training targets, training windows, and physical constraints related to snow liquid water content.

View Article and Find Full Text PDF

Accurate snow depth observations are critical to assess water resources. More than a billion people rely on water from snow, most of which originates in the Northern Hemisphere mountain ranges. Yet, remote sensing observations of mountain snow depth are still lacking at the large scale.

View Article and Find Full Text PDF

The Soil Moisture Active Passive (SMAP) mission Level-4 Soil Moisture (L4_SM) product provides 3-hourly, 9-km resolution, global estimates of surface (0-5 cm) and root-zone (0-100 cm) soil moisture and related land surface variables from 31 March 2015 to present with ~2.5day latency. The ensemble-based L4_SM algorithm assimilates SMAP brightness temperature (Tb) observations into the Catchment land surface model.

View Article and Find Full Text PDF

In the past decades, many studies on soil moisture retrieval from SAR demonstrated a poor correlation between the top layer soil moisture content and observed backscatter coefficients, which mainly has been attributed to difficulties involved in the parameterization of surface roughness. The present paper describes a theoretical study, performed on synthetical surface profiles, which investigates how errors on roughness parameters are introduced by standard measurement techniques, and how they will propagate through the commonly used Integral Equation Model (IEM) into a corresponding soil moisture retrieval error for some of the currently most used SAR configurations. Key aspects influencing the error on the roughness parameterization and consequently on soil moisture retrieval are: the length of the surface profile, the number of profile measurements, the horizontal and vertical accuracy of profile measurements and the removal of trends along profiles.

View Article and Find Full Text PDF

Synthetic Aperture Radar has shown its large potential for retrieving soil moisture maps at regional scales. However, since the backscattered signal is determined by several surface characteristics, the retrieval of soil moisture is an ill-posed problem when using single configuration imagery. Unless accurate surface roughness parameter values are available, retrieving soil moisture from radar backscatter usually provides inaccurate estimates.

View Article and Find Full Text PDF

Remote sensing offers a cost efficient means for identifying and monitoring wetlands over a large area and at different moments in time. In this study, we aim at providing ecologically relevant information on characteristics of temporary and permanent isolated open water wetlands, obtained by standard techniques and relatively cheap imagery. The number, surface area, nearest distance, and dynamics of isolated temporary and permanent wetlands were determined for the Western Cape, South Africa.

View Article and Find Full Text PDF