Appl Microbiol Biotechnol
October 2019
Feruloyl esterases (FAEs) are a key group of enzymes that hydrolyze ferulic acids ester-linked to plant polysaccharides. The cow's rumen is a highly evolved ecosystem of complex microbial microflora capable of converting fibrous substances to energy. From direct cloning of the rumen microbial metagenome, we identified seven active phagemids conferring feruloyl esterase activity.
View Article and Find Full Text PDFDirect cloning of metagenomes has proven to be a powerful tool for the exploration of the diverse sequence space of a microbial community leading to gene discovery and biocatalyst development. The key to such approach is the development of rapid, sensitive, and reliable functional screening of libraries. The majority of library screen have relied on the use of agar plates in petri dishes incorporating the target enzyme substrate for activity detection of positive clones (Iqbal et al.
View Article and Find Full Text PDFA feruloyl esterase (FAE) gene was isolated from a rumen microbial metagenome, cloned into E. coli, and expressed in active form. The enzyme (RuFae4) was classified as a Type D feruloyl esterase based on its action on synthetic substrates and ability to release diferulates.
View Article and Find Full Text PDFA feruloyl esterase (FAE) gene was isolated from a rumen microbial metagenome, cloned into E. coli, and expressed in active form. The enzyme (RuFae2) was identified as a type C feruloyl esterase.
View Article and Find Full Text PDFJ Ind Microbiol Biotechnol
December 2011
The Aspergillus niger feruloyl esterase gene (faeA) was cloned into Saccharomyces cerevisiae via a yeast expression vector, resulting in efficient expression and secretion of the enzyme in the medium with a yield of ~2 mg/l. The recombinant enzyme was purified to homogeneity by anion-exchange and hydrophobic interaction chromatography. The specific activity was determined to be 8,200 U/μg (pH 6.
View Article and Find Full Text PDFAppl Environ Microbiol
September 2006
The development of lysine 2,3-aminomutase as a robust biocatalyst hinges on the development of an in vivo activation system to trigger catalysis. This is the first report to show that, in the absence of chemical reductants, lysine 2,3-aminomutase activity is dependent upon the presence of flavodoxin, ferredoxin, or flavodoxin-NADP(+) reductase.
View Article and Find Full Text PDFStable isotope labeling of an intracellular chemical precursor or metabolite allows direct detection of downstream metabolites of that precursor, arising from novel enzymatic activity of interest, using metabolite profiling liquid chromatography-mass spectrometry. This approach allows the discrimination of downstream metabolites produced from novel enzymatic activity from the unlabeled form of the metabolite arising from native metabolic processes within the cell. Even for the case in which a given product of novel enzymatic activity is a transient, the novel enzymatic activity that produced it can be demonstrated to exist indirectly by identification of product-specific downstream metabolites.
View Article and Find Full Text PDF