Publications by authors named "Hans J Griesser"

While blood-contacting materials are widely deployed in medicine in vascular stents, catheters, and cannulas, devices fail in situ because of thrombosis and restenosis. Furthermore, microbial attachment and biofilm formation is not an uncommon problem for medical devices. Even incremental improvements in hemocompatible materials can provide significant benefits for patients in terms of safety and patency as well as substantial cost savings.

View Article and Find Full Text PDF

Cardiovascular disease is a leading cause of death worldwide; however, despite substantial advances in medical device surface modifications, no synthetic coatings have so far matched the native endothelium as the optimal hemocompatible surface for blood-contacting implants. A promising strategy for rapid restoration of the endothelium on blood-contacting biomedical devices entails attracting circulating endothelial cells or their progenitors, via immobilized cell-capture molecules; for example, anti-CD34 antibody to attract CD34+ endothelial colony-forming cells (ECFCs). Inherent is the assumption that the cells attracted to the biomaterial surface are bound exclusively via a specific CD34 binding.

View Article and Find Full Text PDF

This study demonstrates the ability of , a medically significant human fungal pathogen, to minimize contact with an antifungal surface coating that on a flat surface is lethal on contact by growing on and between micron-sized surface topographical features, thus minimizing the contact area. Scanning electron microscopy showed that cells contacting the "floor" between microcones were killed, whereas cells attached to microcones survived and formed hyphal filaments. These spanned space between cones and avoided contact with the flat surface in-between cones.

View Article and Find Full Text PDF

Unlabelled: Candida auris is known to survive for weeks on solid material surfaces. Its longevity contributes to medical device contamination and spread through healthcare facilities. We fabricated antifungal surface coatings by coating plastic and glass surfaces with a thin polymer layer to which the antifungal drug caspofungin was covalently conjugated.

View Article and Find Full Text PDF

There are many reports of antimicrobial coatings bearing immobilized active agents on surfaces; however, strong analytical evidence is required to verify that the agents are indeed covalently attached to the surface. In the absence of such evidence, antimicrobial activity could result from a release of active agents. We report a detailed assessment of antifungal surface coatings prepared using covalent attachment chemistries, with the aim of establishing a set of instrumental and biological evidence required to convincingly demonstrate antimicrobial activity due to nonreleasing, surface active compounds and to exclude the alternate possibility of activity due to release.

View Article and Find Full Text PDF

A drug-eluting coating applied onto biomedical devices and implants is an appropriate way to ensure that an inhibitory concentration of antimicrobial drugs is present at the device surface, thus preventing surface colonization and subsequent biofilm formation. In this study, a thin polymer coating was applied to materials, and it acted as a drug-delivery reservoir capable of surface delivery of the antifungal drug fluconazole to amounts up to 21 μg/cm. The release kinetics into aqueous solution were quantified by UV spectroscopy and conformed to the Ritger-Peppas and Korsmeyer-Peppas model.

View Article and Find Full Text PDF

Thin polymeric coatings are commonly used for altering surface properties and modulating the interfacial performance of materials. Possible contributions from the substrate to the interfacial forces and effects are, however, usually ignored and are not well understood, nor is it established how the coating thickness modulates and eventually eliminates contributions from substrates to the van der Waals (vdW) interfacial force. In this study we quantified, by colloid-probe atomic force microscope (AFM) and by theoretical calculations, the interfacial vdW contributions from substrates acting through ethanol plasma polymer (EtOHpp) coatings of a range of thicknesses on Au and Si bulk materials.

View Article and Find Full Text PDF

Hyperbranched polyglycerol (HPG) was previously investigated as a nonfouling hydrophilic grafted layer on biomaterial surfaces, analogous to the well-known poly(ethylene oxide) (PEO), but the range of adsorbing cells and proteins tested was limited and at times the assays used were not the most sensitive. Thus, the questions arise whether HPG-grafted layers can indeed efficiently resist adsorption of a wider range of adsorbing biological entities, and how would different biological entities interact with such a coating. An HPG coating of 25 nm thickness was grafted onto a spin-coated and plasma-treated polystyrene (PS) layer on a silicon wafer substrate; this provided a well-suited system for surface analyses by X-ray photoelectron spectroscopy (XPS), time-of-flight secondary ion mass spectrometry (ToF-SIMS), and atomic force microscopy (AFM), which verified the presence of a uniform, smooth grafted HPG layer.

View Article and Find Full Text PDF

Amphiphilic polymers bearing cationic moieties are an emerging alternative to traditional antibiotics given their broad-spectrum activity and low susceptibility to the development of resistance. To date, however, much remains unclear regarding their mechanism of action. Using functional assays (ATP leakage, cell viability, DNA binding) and super-high resolution structured illumination microscopy (OMX-SR) of fluorescently tagged polymers, we present evidence for a complex mechanism, involving membrane permeation as well as cellular uptake, interaction with intracellular targets and possible complexation with bacterial DNA.

View Article and Find Full Text PDF

Deposition chemistry from plasma is highly dependent on both the chemistry of the ions arriving at surfaces and the ion energy. Typically, when measuring the energy distribution of ions arriving at surfaces from plasma, it is assumed that the distributions are the same for all ionic species. Using ethyl acetate as a representative organic precursor molecule, we have measured the ion chemistry and ion energy as a function of pressure and power.

View Article and Find Full Text PDF
Article Synopsis
  • Microbial pathogens, particularly fungi, utilize hydrolases to break down tissues and medical devices to enhance their virulence and disease spread.
  • Researchers developed a model system using luminescent probe molecules in a biodegradable polymer to visualize how fungal hydrolases acquire these probes, revealing that esterases facilitate the degradation of the polymer for probe uptake.
  • The study emphasizes the importance of understanding hydrolases in fungal pathogenesis and their role in surface conditioning, essential for biofilm formation on medical devices.
View Article and Find Full Text PDF

Manipulating the surface properties of materials via the application of coatings is a widely used strategy to achieve desired interfacial interactions, implicitly assuming that the interfacial forces of coated samples are determined exclusively by the surface properties of the coatings. However, interfacial interactions between materials and their environments operate over finite length scales. Thus, the question addressed in this study is whether interactions associated with bulk substrate materials could act through thin coatings or, conversely, how thick a coating needs to be to completely screen subsurface forces contributed by underlying substrates.

View Article and Find Full Text PDF

Plants in the Australian genus (Scrophulariaceae) have attracted considerable recent attention for their antimicrobial compounds, which possess a wide range of chemical structures. As they are typically associated with the oily-waxy resin layer covering leaves and green branchlets, and is prominent among the species containing a pronounced sticky resin layer, this species was considered of interest for assessing its antibacterial constituents. The -hexane fraction of the crude acetone extract of the leaves exhibited antibacterial activity against .

View Article and Find Full Text PDF

Plant metabolites that have shown activity against bacteria and/or environmental fungi represent valuable leads for the identification and development of novel drugs against clinically important human pathogenic fungi. Plants from the genus were highly valued in traditional Australian Aboriginal medicinal practices, and was the most prized among them. As antibacterial activity of extracts from has been documented, this study addresses the question whether there is also activity against infectious fungal human pathogens.

View Article and Find Full Text PDF

Antimicrobial surface coatings that act through a contact-killing mechanism (not diffusive release) could offer many advantages to the design of medical device coatings that prevent microbial colonization and infections. However, as the authors show here, to prevent arriving at an incorrect conclusion about their mechanism of action, it is essential to employ thorough washing protocols validated by surface analytical data. Antimicrobial surface coatings were fabricated by covalently attaching polyene antifungal drugs to surface coatings.

View Article and Find Full Text PDF

Objectives: Fungal biofilms caused by Candida spp. are a major contributor to infections originating from infected biomaterial implants. Since echinocandin-class molecules interfere with the integrity of the fungal cell wall, it was hypothesized that surface-immobilized anidulafungin and micafungin could play a role in preventing fungal adhesion and biofilm formation on surfaces.

View Article and Find Full Text PDF

As some proteins are known to interact with sulfated and phosphated biomolecules such as specific glycosaminoglycans, this study derives from the hypothesis that sulfonate and phosphonate groups on solid polymer surfaces might cause specific interfacial interactions. Such surfaces were prepared by plasma polymerization of heptylamine (HA) and subsequent grafting of sulfonate or phosphonate groups via Michael-type addition of vinylic compounds. Adsorption of the proteins fibrinogen, albumin (HSA) and lysozyme on these functionalised plasma polymer surfaces was studied by XPS and quartz crystal microbalance with dissipation (QCM-D).

View Article and Find Full Text PDF

Historically, there have been two opposing views regarding deposition mechanisms in plasma polymerisation, radical growth and direct ion deposition, with neither being able to fully explain the chemistry of the resultant coating. Deposition rate and film chemistry are dependent on the chemistry of the plasma phase and thus the activation mechanisms of species in the plasma are critical to understanding the relative contributions of various chemical and physical routes to plasma polymer formation. In this study, we investigate the roles that hydrogen plays in activating and deactivating reactive plasma species.

View Article and Find Full Text PDF

In recent years, increasing evidence has been collated on the contributions of fungal species, particularly Candida, to medical device infections. Fungal species can form biofilms by themselves or by participating in polymicrobial biofilms with bacteria. Thus, there is a clear need for effective preventative measures, such as thin coatings that can be applied onto medical devices to stop the attachment, proliferation, and formation of device-associated biofilms.

View Article and Find Full Text PDF

There is a need for coatings for biomedical devices and implants that can prevent the attachment of fungal pathogens while allowing human cells and tissue to appose without cytotoxicity. Here, the authors study whether a poly(2-hydroxyethylmethacrylate) (PHEMA) coating can suppress attachment and biofilm formation by Candida albicans and whether caspofungin terminally attached to surface-tethered polymeric linkers can provide additional benefits. The multistep coating scheme first involved the plasma polymerization of ethanol, followed by the attachment of α-bromoisobutyryl bromide (BiBB) onto surface hydroxyl groups of the plasma polymer layer.

View Article and Find Full Text PDF

One of the most significant hurdles to the affordable, accessible delivery of cell therapy is the cost and difficulty of expanding cells to clinically relevant numbers. Immunotherapy to prevent autoimmune disease, tolerate organ transplants or target cancer critically relies on the expansion of specialized T cell populations. We have designed 3D-printed cell culture lattices with highly organized micron-scale architectures, functionalized via plasma polymerization to bind monoclonal antibodies that trigger cell proliferation.

View Article and Find Full Text PDF

The propensity of glycosaminoglycans to mediate cell-cell and cell-matrix interactions opens the door to capture cells, including circulating blood cells, onto biomaterial substrates. Chondroitin sulfate (CS)-B is of particular interest, since it interacts with the receptor (EGF)-like module-containing mucin-like hormone receptor-like 2 precursor (EMR2) displayed on the surface of leukocytes and endothelial progenitor cells. Herein, CS-B and its isomer CS-A were covalently immobilized onto heptylamine plasma polymer films via three different binding chemistries to develop platform technology for the capture of EMR2 expressing cells onto solid carriers.

View Article and Find Full Text PDF

Chemically functionalized surfaces may be produced via plasma polymerization, however a high degree of functional group retention is often difficult to achieve. Here, the plasma polymerization of three structurally related ester precursors, ethyl isobutyrate (EIB), methyl isobutyrate (MIB) and ethyl trimethylacetate (ETMA) is compared at low and high pressure. In moving from a low pressure to higher pressure regime, significant changes in the plasma chemistry and resulting plasma polymer deposit were observed with much higher retention of chemical functionality at the higher pressure observed.

View Article and Find Full Text PDF

We report a systematic study of the plasma polymerization of ethyl α-bromoisobutyrate (EBIB) to produce thin film coatings capable of serving as ATRP initiation surfaces, for which they must contain α-bromoisobutyryl functional groups. In the deposition of polymeric coatings by plasma polymerization there generally occurs considerable fragmentation of precursor ("monomer") molecules in the plasma; and the retention of larger structural elements is challenging, particularly when they are inherently chemically labile. Empirical principles such as low plasma power and low pressure are usually utilized.

View Article and Find Full Text PDF