Publications by authors named "Hans Hon Sang Chan"

First-quantized, grid-based methods for chemistry modeling are a natural and elegant fit for quantum computers. However, it is infeasible to use today's quantum prototypes to explore the power of this approach because it requires a substantial number of near-perfect qubits. Here, we use exactly emulated quantum computers with up to 36 qubits to execute deep yet resource-frugal algorithms that model 2D and 3D atoms with single and paired particles.

View Article and Find Full Text PDF

electronic excited state calculations are necessary for the quantitative study of photochemical reactions, but their accurate computation on classical computers is plagued by prohibitive resource scaling. The Variational Quantum Deflation (VQD) is an extension of the quantum-classical Variational Quantum Eigensolver (VQE) algorithm for calculating electronic excited state energies, and has the potential to address some of these scaling challenges using quantum computers. However, quantum computers available in the near term can only support a limited number of quantum circuit operations, so reducing the quantum computational cost in VQD methods is critical to their realisation.

View Article and Find Full Text PDF