Publications by authors named "Hans Henning Kunz"

In nature plants constantly experience changes in light intensities. Low illumination limits photosynthesis and growth. However, also high light intensities are a threat to plants as the photosynthetic machinery gets damaged when the incoming energy surpasses the capacity of photochemistry.

View Article and Find Full Text PDF

Arabidopsis thaliana possesses two different ion-export mechanisms in the plastid inner envelope membrane. Due to a genome duplication, the transport proteins are encoded by partly redundant loci: K-efflux antiporter1 (KEA1) and KEA2 and mechanosensitive channel of small conductance-like2 (MSL2) and MSL3. Thus far, a functional link between these two mechanisms has not been established.

View Article and Find Full Text PDF

Plant yields heavily depend on proper macro- and micronutrient supply from the soil. In the leaf cells, nutrient ions fulfill specific roles in biochemical reactions, especially photosynthesis housed in the chloroplast. Here, a well-balanced ion homeostasis is maintained by a number of ion transport proteins embedded in the envelope and thylakoid membranes.

View Article and Find Full Text PDF

Plants need to acclimate to different stresses to optimize growth under unfavorable conditions. In Arabidopsis (Arabidopsis thaliana), the abundance of the chloroplast envelope protein FATTY ACID EXPORT PROTEIN1 (FAX1) decreases after the onset of low temperatures. However, how FAX1 degradation occurs and whether altered FAX1 abundance contributes to cold tolerance in plants remains unclear.

View Article and Find Full Text PDF
Article Synopsis
  • Leaf plastids are crucial for photosynthesis and other metabolic processes in plants, and understanding their functions is linked to studying their size and volume.
  • Researchers developed three microscopy techniques to measure the in situ volumes of chloroplasts, using chlorophyll fluorescence, a CFP marker, and serial block-face scanning electron microscopy.
  • The study found that average volumes for mesophyll chloroplasts and guard cell plastids were 93 μm and 18 μm respectively, with chlorophyll fluorescence proving to be a reliable method for volume measurement, especially for labs lacking advanced equipment.
View Article and Find Full Text PDF

Gram-negative bacteria from the group are survivors in various environmental niches. For example, the bacteria secrete siderophores to capture ferric ions under deficiency conditions. Tripartite efflux systems are involved in the secretion of siderophores, which are also important for antibiotic resistance.

View Article and Find Full Text PDF

Plastids are the site of complex biochemical pathways, most prominently photosynthesis. The organelle evolved through endosymbiosis with a cyanobacterium, which is exemplified by the outer envelope membrane that harbors more than 40 proteins in Arabidopsis. Their evolutionary conservation indicates high significance for plant cell function.

View Article and Find Full Text PDF

A micro-cantilever technique applied to individual leaf epidermis cells of intact Arabidopsis thaliana and Nicotiana tabacum synthesizing genetically encoded calcium indicators (R-GECO1 and GCaMP3) revealed that compressive forces induced local calcium peaks that preceded delayed, slowly moving calcium waves. Releasing the force evoked significantly faster calcium waves. Slow waves were also triggered by increased turgor and fast waves by turgor drops in pressure probe tests.

View Article and Find Full Text PDF

In C4 plants, the pyruvate (Pyr), phosphate dikinase regulatory protein (PDRP) regulates the activity of the C4 pathway enzyme Pyr, phosphate dikinase (PPDK) in a light-/dark-dependent manner. The importance of this regulatory action to C4 pathway function and overall C4 photosynthesis is unknown. To resolve this question, we assessed in vivo PPDK phospho-regulation and whole leaf photophysiology in a CRISPR-Cas9 PDRP knockout (KO) mutant of the NADP-ME C4 grass green millet (Setaria viridis).

View Article and Find Full Text PDF

In nature, plants experience rapid changes in light intensity and quality throughout the day. To maximize growth, they have established molecular mechanisms to optimize photosynthetic output while protecting components of the light-dependent reaction and CO fixation pathways. Plant phenotyping of mutant collections has become a powerful tool to unveil the genetic loci involved in environmental acclimation.

View Article and Find Full Text PDF

Defects in two plastid K/H EFFLUX ANTIPORTERs in can be relieved by loss of a plasma membrane Na/H exchanger, presumably by altering plant K transport.

View Article and Find Full Text PDF

Plant productivity greatly relies on a flawless concerted function of the two photosystems (PS) in the chloroplast thylakoid membrane. While damage to PSII can be rapidly resolved, PSI repair is complex and time-consuming. A major threat to PSI integrity is acceptor side limitation e.

View Article and Find Full Text PDF

Two decades ago, large cation currents were discovered in the envelope membranes of Pisum sativum L. (pea) chloroplasts. The deduced K+-permeable channel was coined fast-activating chloroplast cation channel but its molecular identity remained elusive.

View Article and Find Full Text PDF
Article Synopsis
  • Iron (Fe) is crucial for plants, and its absorption is carefully controlled to avoid deficiency or toxicity; however, cadmium (Cd) complicates this balance by causing both Fe deficiency and toxicity.
  • Gene expression analysis in wild-type Arabidopsis and a mutant (opt3-2) showed a significant overlap in gene responses to Fe deficiency and Cd exposure, with opt3-2 revealing additional gene clusters influenced by Cd.
  • The study suggests that high levels of hydrogen peroxide (H2O2) in opt3-2 may inhibit certain gene expressions typically induced by Fe deficiency or Cd exposure, highlighting the complex regulation of Fe homeostasis in plants.
View Article and Find Full Text PDF

The inner-envelope K+ EFFLUX ANTIPORTERS (KEA) 1 and 2 are critical for chloroplast development, ion homeostasis, and photosynthesis. However, the mechanisms by which changes in ion flux across the envelope affect organelle biogenesis remained elusive. Chloroplast development requires intricate coordination between the nuclear genome and the plastome.

View Article and Find Full Text PDF

In photosynthetic thylakoid membranes the proton motive force (pmf) not only drives ATP synthesis, in addition it is central to controlling and regulating energy conversion. As a consequence, dynamic fine-tuning of the two pmf components, electrical (Δψ) and chemical (ΔpH), is an essential element for adjusting photosynthetic light reactions to changing environmental conditions. Good evidence exists that the Δψ/ΔpH partitioning is controlled by thylakoid potassium and chloride ion transporters and channels.

View Article and Find Full Text PDF

During photosynthesis, electrons travel from light-excited chlorophyll molecules along the electron transport chain to the final electron acceptor nicotinamide adenine dinucleotide phosphate (NADP) to form NADPH, which fuels the Calvin-Benson-Bassham cycle (CBBC). To allow photosynthetic reactions to occur flawlessly, a constant resupply of the acceptor NADP is mandatory. Several known stromal mechanisms aid in balancing the redox poise, but none of them utilizes the structurally highly similar coenzyme NAD(H).

View Article and Find Full Text PDF

In photosynthetic electron transport, large multiprotein complexes are connected by small diffusible electron carriers, the mobility of which is challenged by macromolecular crowding. For thylakoid membranes of higher plants, a long-standing question has been which of the two mobile electron carriers, plastoquinone or plastocyanin, mediates electron transport from stacked grana thylakoids where photosystem II (PSII) is localized to distant unstacked regions of the thylakoids that harbor PSI. Here, we confirm that plastocyanin is the long-range electron carrier by employing mutants with different grana diameters.

View Article and Find Full Text PDF

The photosynthetic machinery of plants can acclimate to changes in light conditions by balancing light-harvesting between the two photosystems (PS). This acclimation response is induced by the change in the redox state of the plastoquinone pool, which triggers state transitions through activation of the STN7 kinase and subsequent phosphorylation of light-harvesting complex II (LHCII) proteins. Phosphorylation of LHCII results in its association with PSI (state 2), whereas dephosphorylation restores energy allocation to PSII (state 1).

View Article and Find Full Text PDF

Background: Over the last years, several plant science labs have started to employ fluctuating growth light conditions to simulate natural light regimes more closely. Many plant mutants reveal quantifiable effects under fluctuating light despite being indistinguishable from wild-type plants under standard constant light. Moreover, many subtle plant phenotypes become intensified and thus can be studied in more detail.

View Article and Find Full Text PDF

The plastid potassium cation efflux antiporters (KEAs) are important for chloroplast function, development, and photosynthesis. To understand their regulation at the protein level is therefore of fundamental importance. Prior studies have focused on the regulatory K transport and NAD-binding (KTN) domain in the C-terminus of the thylakoid carrier KEA3 but the localization of this domain remains unclear.

View Article and Find Full Text PDF

Photosynthesis is limited by the slow relaxation of nonphotochemical quenching, which primarily dissipates excess absorbed light energy as heat. Because the heat dissipation process is proportional to light-driven thylakoid lumen acidification, manipulating thylakoid ion and proton flux via transport proteins could improve photosynthesis. However, an important aspect of the current understanding of the thylakoid ion transportome is inaccurate.

View Article and Find Full Text PDF

Cytidine triphosphate (CTP) is essential for DNA, RNA and phospholipid biosynthesis. De novo synthesis is catalyzed by CTP synthases (CTPS). Arabidopsis encodes five CTPS isoforms that unanimously share conserved motifs found across kingdoms, suggesting all five are functional enzymes.

View Article and Find Full Text PDF