Publications by authors named "Hans Hacker"

Mouse dendritic cells (DCs) are routinely generated based on cells isolated form the bone marrow (BM) and cultured in the presence of growth factors that support DC development, such as FMS-like tyrosine kinase 3 ligand (FLT3L) and granulocyte-macrophage colony-stimulating factor (GM-CSF) (Guo et al., J Immunol Methods 432:24-29, 2016). In response to these growth factors, DC progenitors expand and differentiate, while other cell types die during the in vitro culture period, ultimately leading to relatively homogenous DC populations.

View Article and Find Full Text PDF

Mechanisms keeping leukocytes distant of local inflammatory processes in a resting state despite systemic release of inflammatory triggers are a pivotal requirement for avoidance of overwhelming inflammation but are ill defined. Dimers of the alarmin S100A8/S100A9 activate Toll-like receptor-4 (TLR4) but extracellular calcium concentrations induce S100A8/S100A9-tetramers preventing TLR4-binding and limiting their inflammatory activity. So far, only antimicrobial functions of released S100A8/S100A9-tetramers (calprotectin) are described.

View Article and Find Full Text PDF

Toll-like receptors (TLRs) recognize pathogen- and host-derived factors and control immune responses via the adaptor protein MyD88 and members of the interferon regulatory transcription factor (IRF) family. IRFs orchestrate key effector functions, including cytokine release, cell differentiation, and, under certain circumstances, inflammation pathology. Here, we show that IRF activity is generically controlled by the Src kinase family member LYN, which phosphorylates all TLR-induced IRFs at a conserved tyrosine residue, resulting in K48-linked polyubiquitination and proteasomal degradation of IRFs.

View Article and Find Full Text PDF

Dendritic cells (DCs) are important antigen-presenting cells that connect innate and adaptive immune responses. DCs are heterogeneous and can be divided into conventional DCs (cDCs) and plasmacytoid DCs (pDCs). cDCs specializes in presenting antigens to and activate naïve T cells.

View Article and Find Full Text PDF

Diagnostic tests that detect antibodies (AB) against SARS-CoV-2 for evaluation of seroprevalence and guidance of health care measures are important tools for managing the COVID-19 pandemic. Current tests have certain limitations with regard to turnaround time, costs and availability, particularly in point-of-care (POC) settings. We established a hemagglutination-based AB test that is based on bi-specific proteins which contain a dromedary-derived antibody (nanobody) binding red blood cells (RBD) and a SARS-CoV-2-derived antigen, such as the receptor-binding domain of the Spike protein (Spike-RBD).

View Article and Find Full Text PDF

Background: Tissue-resident macrophages have mixed developmental origins. They derive in variable extent from yolk sac (YS) hematopoiesis during embryonic development. Bone marrow (BM) hematopoietic progenitors give rise to tissue macrophages in postnatal life, and their contribution increases upon organ injury.

View Article and Find Full Text PDF

HoxB8 multipotent progenitors (MPP) are obtained by expression of the estrogen receptor hormone binding domain (ERHBD) HoxB8 fusion gene in mouse BM cells. HoxB8 MPP generate (i) the full complement of DC subsets (cDC1, cDC2, and pDC) in vitro and in vivo and (ii) allow CRISPR/Cas9-mediated gene editing, for example, generating homozygous deletions in cis-acting DNA elements at high precision, and (iii) efficient gene repression by dCas9-KRAB for studying gene regulation in DC differentiation.

View Article and Find Full Text PDF

Diagnostic tests that detect antibodies (AB) against SARS-CoV-2 for evaluation of seroprevalence and guidance of health care measures are important tools for managing the COVID-19 pandemic. Current tests have certain limitations with regard to turnaround time, costs and availability, particularly in point-of-care (POC) settings. We established a hemagglutination-based AB test (HAT) that is based on bi-specific proteins which contain a dromedary-derived antibody (nanobody) binding red blood cells (RBD) and a SARS-CoV-2-derived antigen, such as the receptor-binding domain of the Spike protein (Spike-RBD).

View Article and Find Full Text PDF

Cells navigating through complex tissues face a fundamental challenge: while multiple protrusions explore different paths, the cell needs to avoid entanglement. How a cell surveys and then corrects its own shape is poorly understood. Here, we demonstrate that spatially distinct microtubule dynamics regulate amoeboid cell migration by locally promoting the retraction of protrusions.

View Article and Find Full Text PDF

Systemic lupus erythematosus (SLE) is a complex autoimmune disease with genetic and environmental contributions. Hallmarks of the disease are the appearance of immune complexes (IC) containing autoreactive Abs and TLR-activating nucleic acids, whose deposition in kidney glomeruli is suspected to promote tissue injury and glomerulonephritis (GN). Here, using a mouse model based on the human SLE susceptibility locus TNFAIP3-interacting protein 1 (TNIP1, also known as ABIN1), we investigated the pathogenesis of GN.

View Article and Find Full Text PDF

The immune system uses members of the toll-like receptor (TLR) family to recognize a variety of pathogen- and host-derived molecules in order to initiate immune responses. Although TLR-mediated, pro-inflammatory immune responses are essential for host defense, prolonged and exaggerated activation can result in inflammation pathology that manifests in a variety of diseases. Therefore, small-molecule inhibitors of the TLR signaling pathway might have promise as anti-inflammatory drugs.

View Article and Find Full Text PDF

Toll-like receptors (TLRs) recognize various pathogen- and host tissue-derived molecules and initiate inflammatory immune responses. Exaggerated or prolonged TLR activation, however, can lead to etiologically diverse diseases, such as bacterial sepsis, metabolic and autoimmune diseases, or stroke. Despite the apparent medical need, no small-molecule drugs against TLR pathways are clinically available.

View Article and Find Full Text PDF

Estrogen inducible Hoxb8 leads to conditional immortalization of hematopoietic precursors. These cells can be cultured and infected with the CRISPR/Cas9 system for genome editing, circumventing resource consuming generation of mouse models. The resultant cells retain their ability to differentiate into migratory dendritic cells.

View Article and Find Full Text PDF

Glioblastoma (GBM) is a deadly and incurable brain tumor. Although microRNAs (miRNAs) play critical roles in regulating the cancer cell phenotype, the underlying mechanisms of how they regulate tumorigenesis are incompletely understood. We previously showed that miR-203a is expressed at relatively low levels in GBM patients, and ectopic miR-203a expression in GBM cell lines inhibited cell proliferation and migration, increased sensitivity to apoptosis induced by interferon (IFN) or temozolomide , and inhibited GBM tumorigenesis .

View Article and Find Full Text PDF

Vitamin A is an essential nutrient for the protection of children from respiratory tract disease. Supplementation with vitamin A is frequently prescribed in the clinical setting, in part to combat deficiencies among children in developing countries, and in part to treat respiratory infections in clinical trials. This vitamin influences immune responses via multiple, and sometimes seemingly contradictory mechanisms.

View Article and Find Full Text PDF

Osteoclasts are cells specialized in bone resorption. Currently, studies on murine osteoclasts are primarily performed on bone marrow-derived cells with the use of many animals and limited cells available. ER-Hoxb8 cells are conditionally immortalized monocyte/macrophage murine progenitor cells, recently described to be able to differentiate toward functional osteoclasts.

View Article and Find Full Text PDF

Psoriasis is a chronic inflammatory skin disease with a clear genetic contribution, characterized by keratinocyte proliferation and immune cell infiltration. Various closely interacting cell types, including innate immune cells, T cells, and keratinocytes, are known to contribute to inflammation. Innate immune cells most likely initiate the inflammatory process by secretion of IL-23.

View Article and Find Full Text PDF

Background: The nonstructural protein 1 (NS1) of influenza A viruses can act as a viral replication enhancer by antagonizing type I interferon (IFN) induction and response in infected cells. We previously reported that A/Puerto Rico/8/1934 (H1N1) (PR8) containing the NS1 gene derived from A/swine/IA/15/1930 (H1N1) (IA30) replicated more efficiently than the wild type virus. Here, we identified amino acids in NS1 critical for enhancing viral replication.

View Article and Find Full Text PDF

SHARPIN is an essential component of the linear ubiquitin chain assembly complex (LUBAC) complex that controls signalling pathways of various receptors, including the tumour necrosis factor receptor (TNFR), Toll-like receptor (TLR) and antigen receptor, in part by synthesis of linear, non-degrading ubiquitin chains. Consistent with SHARPIN's function in different receptor pathways, the phenotype of SHARPIN-deficient mice is complex, including the development of inflammatory systemic and skin diseases, the latter of which depend on TNFR signal transduction. Given the established function of SHARPIN in primary and malignant B cells, we hypothesized that SHARPIN might also regulate T-cell receptor (TCR) signalling and thereby control T-cell biology.

View Article and Find Full Text PDF

Plasmacytoid dendritic cells (pDCs) are primary producers of type I interferon (IFN) in response to viruses. The IFN-producing capacity of pDCs is regulated by specific inhibitory receptors, yet none of the known receptors are conserved in evolution. We report that within the human immune system, receptor protein tyrosine phosphatase sigma (PTPRS) is expressed specifically on pDCs.

View Article and Find Full Text PDF

Background: Neutrophilic inflammation often persists for days despite effective antibiotic treatment and contributes to brain damage in bacterial meningitis. We propose here that myeloid-related protein 14 (MRP14), an abundant cytosolic protein in myeloid cells, acts as an endogenous danger signal, driving inflammation and aggravating tissue injury.

Methods: The release pattern of MRP14 was analyzed in human and murine cerebrospinal fluid (CSF), as well as in isolated neutrophils.

View Article and Find Full Text PDF

Unlabelled: Influenza A virus (IAV) replication depends on the interaction of virus proteins with host factors. The viral nonstructural protein 1 (NS1) is essential in this process by targeting diverse cellular functions, including mRNA splicing and translation, cell survival, and immune defense, in particular the type I interferon (IFN-I) response. In order to identify host proteins targeted by NS1, we established a replication-competent recombinant IAV that expresses epitope-tagged forms of NS1 and NS2, which are encoded by the same gene segment, allowing purification of NS proteins during natural cell infection and analysis of interacting proteins by quantitative mass spectrometry.

View Article and Find Full Text PDF

Acute graft-versus-host disease (GVHD) considerably limits wider usage of allogeneic hematopoietic cell transplantation (allo-HCT). Antigen-presenting cells and T cells are populations customarily associated with GVHD pathogenesis. Of note, neutrophils are the largest human white blood cell population.

View Article and Find Full Text PDF

We previously identified CCL20 as an early chemokine in the cerebrospinal fluid (CSF) of patients with pneumococcal meningitis but its functional relevance was unknown. Here we studied the role of CCL20 and its receptor CCR6 in pneumococcal meningitis. In a prospective nationwide study, CCL20 levels were significantly elevated in the CSF of patients with pneumococcal meningitis and correlated with CSF leukocyte counts.

View Article and Find Full Text PDF

Streptococcus pneumoniae infection is a leading cause of bacterial pneumonia, sepsis and meningitis and is associated with high morbidity and mortality. Type I interferon (IFN-I), whose contribution to antiviral and intracellular bacterial immunity is well established, is also elicited during pneumococcal infection, yet its functional significance is not well defined. Here, we show that IFN-I plays an important role in the host defense against pneumococci by counteracting the transmigration of bacteria from the lung to the blood.

View Article and Find Full Text PDF