Publications by authors named "Hans Georg Joost"

The term "glycation compounds" comprises a wide range of structurally diverse compounds that are formed endogenously and in food the Maillard reaction, a chemical reaction between reducing sugars and amino acids. Glycation compounds produced endogenously are considered to contribute to a range of diseases. This has led to the hypothesis that glycation compounds present in food may also cause adverse effects and thus pose a nutritional risk to human health.

View Article and Find Full Text PDF

The Senate Commission on Food Safety (SKLM) of the German Research Foundation (DFG) has reviewed the currently available data in order to assess the health risks associated with the use of acetaldehyde as a flavoring substance in foods. Acetaldehyde is genotoxic in vitro. Following oral intake of ethanol or inhalation exposure to acetaldehyde, systemic genotoxic effects of acetaldehyde in vivo cannot be ruled out (induction of DNA adducts and micronuclei).

View Article and Find Full Text PDF

This opinion of the Senate Commission on Food Safety (SKLM) of the German Research Foundation (Deutsche Forschungsgemeinschaft, DFG) presents arguments for an updated risk assessment of diet-related exposure to acrylamide (AA), based on a critical review of scientific evidence relevant to low dose exposure. The SKLM arrives at the conclusion that as long as an appropriate exposure limit for AA is not exceeded, genotoxic effects resulting in carcinogenicity are unlikely to occur. Based on the totality of the evidence, the SKLM considers it scientifically justified to derive a tolerable daily intake (TDI) as a health-based guidance value.

View Article and Find Full Text PDF

Subsequent to the dietary uptake of nitrate/nitrite in combination with acetaldehyde/ethanol, combination effects resulting from the sustained endogenous exposure to nitrite and acetaldehyde may be expected. This may imply locoregional effects in the upper gastrointestinal tract as well as systemic effects, such as a potential influence on endogenous formation of N-nitroso compounds (NOC). Salivary concentrations of the individual components nitrate and nitrite and acetaldehyde are known to rise after ingestion, absorption and systemic distribution, thereby reflecting their respective plasma kinetics and parallel secretion through the salivary glands as well as the microbial/enzymatic metabolism in the oral cavity.

View Article and Find Full Text PDF

Since the addition of fluoride to drinking water in the 1940s, there have been frequent and sometimes heated discussions regarding its benefits and risks. In a recently published review, we addressed the question if current exposure levels in Europe represent a risk to human health. This review was discussed in an editorial asking why we did not calculate benchmark doses (BMD) of fluoride neurotoxicity for humans.

View Article and Find Full Text PDF

Type 2 diabetes (T2D) is a complex metabolic disease regulated by an interaction of genetic predisposition and environmental factors. To understand the genetic contribution in the development of diabetes, mice varying in their disease susceptibility were crossed with the obese and diabetes-prone New Zealand obese (NZO) mouse. Subsequent whole-genome sequence scans revealed one major quantitative trait loci (QTL), on chromosome 4, linked to elevated blood glucose and reduced plasma insulin and low levels of pancreatic insulin.

View Article and Find Full Text PDF

It was generally accepted as a default assumption that No-Observed-Adverse-Effect Levels (NOAELs) or Lowest-Observed-Adverse-Effect Levels (LOAELs) in long-term toxicity studies are lower than in short-term ones, i.e. the toxic potency increases with prolonged exposure duration.

View Article and Find Full Text PDF

Recently, epidemiological studies have suggested that fluoride is a human developmental neurotoxicant that reduces measures of intelligence in children, placing it into the same category as toxic metals (lead, methylmercury, arsenic) and polychlorinated biphenyls. If true, this assessment would be highly relevant considering the widespread fluoridation of drinking water and the worldwide use of fluoride in oral hygiene products such as toothpaste. To gain a deeper understanding of these assertions, we reviewed the levels of human exposure, as well as results from animal experiments, particularly focusing on developmental toxicity, and the molecular mechanisms by which fluoride can cause adverse effects.

View Article and Find Full Text PDF

Background & Aims: Currently, only a few genetic variants explain the heritability of fatty liver disease. Quantitative trait loci (QTL) analysis of mouse strains has identified the susceptibility locus Ltg/NZO (liver triglycerides from New Zealand obese [NZO] alleles) on chromosome 18 as associating with increased hepatic triglycerides. Herein, we aimed to identify genomic variants responsible for this association.

View Article and Find Full Text PDF

Background: Epidemiological studies suggest that an increased red meat intake is associated with a higher risk of type 2 diabetes, whereas an increased fiber intake is associated with a lower risk.

Objectives: We conducted an intervention study to investigate the effects of these nutritional factors on glucose and lipid metabolism, body-fat distribution, and liver fat content in subjects at increased risk of type 2 diabetes.

Methods: This prospective, randomized, and controlled dietary intervention study was performed over 6 mo.

View Article and Find Full Text PDF

Objective: The German Diabetes Risk Score (GDRS) is a diabetes prediction model which only includes non-invasively measured risk factors. The aim of this study was to extend the original GDRS by hemoglobin A1c (HbA1c) and validate this clinical GDRS in the nationwide German National Health Interview and Examination Survey 1998 (GNHIES98) cohort.

Research Design And Methods: Extension of the GDRS was based on the European Prospective Investigation into Cancer and Nutrition (EPIC)-Potsdam study with baseline assessment conducted between 1994 and 1998 (N=27 548, main age range 35-65 years).

View Article and Find Full Text PDF

To explore the genetic determinants of obesity and Type 2 diabetes (T2D), the German Center for Diabetes Research (DZD) conducted crossbreedings of the obese and diabetes-prone New Zealand Obese mouse strain with four different lean strains (B6, DBA, C3H, 129P2) that vary in their susceptibility to develop T2D. Genome-wide linkage analyses localized more than 290 quantitative trait loci (QTL) for obesity, 190 QTL for diabetes-related traits and 100 QTL for plasma metabolites in the outcross populations. A computational framework was developed that allowed to refine critical regions and to nominate a small number of candidate genes by integrating reciprocal haplotype mapping and transcriptome data.

View Article and Find Full Text PDF

Aims/hypothesis: Obesity results from a constant and complex interplay between environmental stimuli and predisposing genes. Recently, we identified the IFN-activated gene Ifi202b as the most likely gene responsible for the obesity quantitative trait locus Nob3 (New Zealand Obese [NZO] obesity 3). The aim of this study was to evaluate the effects of Ifi202b on body weight and adipose tissue biology, and to clarify the functional role of its human orthologue IFI16.

View Article and Find Full Text PDF

Obesity and ectopic fat disposition are risk factors for metabolic disease. Recent data indicate that IGFBP2 expression in liver is epigenetically inhibited during hepatic steatosis. The aim of this study was to investigate if epigenetic de-regulation of hepatic Igfbp2 occurs already early in life and is associated with increased risk for diet-induced obesity (DIO) during adolescence.

View Article and Find Full Text PDF

Induction of skeletal muscle (SM) mitochondrial stress by expression of uncoupling protein 1 (UCP1) in mice results in a healthy metabolic phenotype associated with increased secretion of FGF21 from SM. Here, we investigated whether SM mitochondrial uncoupling can compensate obesity and insulin resistance in the NZO mouse, a polygenic diabesity model. Male NZO mice were crossed with heterozygous UCP1 transgenic (tg) mice (mixed C57BL/6/CBA background) and further backcrossed to obtain F1 and N2 offspring with 50 and 75 % NZO background, respectively.

View Article and Find Full Text PDF

Beta-cell apoptosis and failure to induce beta-cell regeneration are hallmarks of type 2-like diabetes in mouse models. Here we show that islets from obese, diabetes-susceptible New Zealand Obese (NZO) mice, in contrast to diabetes-resistant C57BL/6J (B6)-ob/ob mice, do not proliferate in response to an in-vivo glucose challenge but lose their beta-cells. Genome-wide RNAseq based transcriptomics indicated an induction of 22 cell cycle-associated genes in B6-ob/ob islets that did not respond in NZO islets.

View Article and Find Full Text PDF

Aims/hypothesis: Zfp69 was previously identified by positional cloning as a candidate gene for obesity-associated diabetes. C57BL/6J and New Zealand obese (NZO) mice carry a loss-of-function mutation due to the integration of a retrotransposon. On the NZO background, the Zfp69 locus caused severe hyperglycaemia and loss of beta cells.

View Article and Find Full Text PDF

Background: Habitual red meat consumption was consistently related to a higher risk of type 2 diabetes in observational studies. Potentially underlying mechanisms are unclear.

Objective: This study aimed to identify blood metabolites that possibly relate red meat consumption to the occurrence of type 2 diabetes.

View Article and Find Full Text PDF

Caloric restriction and intermittent fasting are known to improve glucose homeostasis and insulin resistance in several species including humans. The aim of this study was to unravel potential mechanisms by which these interventions improve insulin sensitivity and protect from type 2 diabetes. Diabetes-susceptible New Zealand Obese mice were either 10% calorie restricted (CR) or fasted every other day (IF), and compared to ad libitum (AL) fed control mice.

View Article and Find Full Text PDF

Aims/hypothesis: Oestrogens have previously been shown to exert beta cell protective, glucose-lowering effects in mouse models. Therefore, the recent development of a glucagon-like peptide-1 (GLP-1)-oestrogen conjugate, which targets oestrogen into cells expressing GLP-1 receptors, offers an opportunity for a cell-specific and enhanced beta cell protection by oestrogen. The purpose of this study was to compare the effects of GLP-1 and GLP-1-oestrogen during beta cell failure under glucolipotoxic conditions.

View Article and Find Full Text PDF

Type 2 diabetes mellitus is an independent risk factor for cancer such as pancreatic, liver, colorectal and breast cancer. In addition, diabetes decreases the risk of prostate cancer. These associations have been found in numerous epidemiological studies, among them several prospective cohorts.

View Article and Find Full Text PDF

The Rab-GTPase–activating proteins TBC1D1 and TBC1D4 (AS160) were previously shown to regulate GLUT4 translocation in response to activation of AKT and AMP-dependent kinase [corrected]. However, knockout mice lacking either Tbc1d1 or Tbc1d4 displayed only partially impaired insulin-stimulated glucose uptake in fat and muscle tissue. The aim of this study was to determine the impact of the combined inactivation of Tbc1d1 and Tbc1d4 on glucose metabolism in double-deficient (D1/4KO) mice.

View Article and Find Full Text PDF