The erythrocyte sedimentation rate (ESR) is one of the oldest medical diagnostic tools. However, currently there is some debate on the structure formed by the cells during the sedimentation process. While the conventional view is that erythrocytes sediment as separate aggregates, others have suggested that they form a percolating gel, similar to other colloidal suspensions.
View Article and Find Full Text PDFWe propose a novel automatic segmentation algorithm that separates the components of human skin cells from the rest of the tissue in fluorescence data of three-dimensional scans using non-invasive multiphoton tomography. The algorithm encompasses a multi-stage merging on preprocessed superpixel images to ensure independence from a single empirical global threshold. This leads to a high robustness of the segmentation considering the depth-dependent data characteristics, which include variable contrasts and cell sizes.
View Article and Find Full Text PDFTwo-photon microscopes have been successfully translated into clinical imaging tools to obtain high-resolution optical biopsies for
The clinical outcome of corneal collagen crosslinking (CXL) is typically evaluated several weeks after treatment. An earlier assessment of its outcome could lead to an optimization of the treatment, including an immediate re-intervention in case of failure, thereby, avoiding additional discomfort and pain to the patient. In this study, we propose two-photon imaging (TPI) as an earlier evaluation method.
View Article and Find Full Text PDFThe diagnosis of corneal diseases may be improved by monitoring the metabolism of cells and the structural organization of the stroma using two-photon imaging (TPI). We used TPI to assess the differences between nonpathological (NP) human corneas and corneas diagnosed with either keratoconus, Acanthamoeba keratitis, or stromal corneal scars. Images were acquired using a custom-built five-dimensional laser-scanning microscope with a broadband sub-15 femtosecond near-infrared pulsed excitation laser and a 16-channel photomultiplier tube detector in combination with a time-correlated single photon counting module.
View Article and Find Full Text PDFInvest Ophthalmol Vis Sci
January 2018
Arthropod Struct Dev
January 2017
The decay time of the fluorescence of excited molecules, called fluorescence lifetime, can provide information about the cuticle composition additionally to widely used spectral characteristics. We compared autofluorescence lifetimes of different cuticle regions in the copulatory organ of females of the bedbug, Cimex lectularius. After two-photon excitation at 720 nm, regions recently characterised as being rich in resilin showed a longer bimodal distribution of the mean autofluorescence lifetime τ (tau-m) at 0.
View Article and Find Full Text PDFWe employed two commercially available femtosecond lasers, a Ti:sapphire and a ytterbium-based oscillator, to directly compare from a user’s practical point-of-view in one common experimental setup the efficiencies of transient laser-induced cell membrane permeabilization, i.e., of so-called optoporation.
View Article and Find Full Text PDFFive dimensional microscopy with a 12-fs laser scanning microscope based on spectrally resolved two-photon autofluorescence lifetime and second-harmonic generation (SHG) imaging was used to characterize all layers of the porcine cornea. This setup allowed the simultaneous excitation of both metabolic cofactors, NAD(P)H and flavins, and their discrimination based on their spectral emission properties and fluorescence decay characteristics. Furthermore, the architecture of the stromal collagen fibrils was assessed by SHG imaging in both forward and backward directions.
View Article and Find Full Text PDFWe report a virus-free optical approach to human cell reprogramming into induced pluripotent stem cells with low-power nanoporation using ultrashort Bessel-shaped laser pulses. Picojoule near-infrared sub-20 fs laser pulses at a high 85 MHz repetition frequency are employed to generate transient nanopores in the membrane of dermal fibroblasts for the introduction of four transcription factors to induce the reprogramming process. In contrast to conventional approaches which utilize retro- or lentiviruses to deliver genes or transcription factors into the host genome, the laser method is virus-free; hence, the risk of virus-induced cancer generation limiting clinical application is avoided.
View Article and Find Full Text PDFMicrosc Res Tech
December 2015
Multiphoton laser scanning microscopy commonly relies on bulky and expensive femtosecond lasers. We integrated a novel minimal-footprint Ti:sapphire oscillator, pumped by a frequency-doubled distributed Bragg reflector tapered diode laser, into a clinical multiphoton tomograph and evaluated its imaging capability using different biological samples, i.e.
View Article and Find Full Text PDFInduced pluripotent stem cell (iPS cell) technology can be used to produce unlimited numbers of functional cells for both research and therapeutic purposes without ethical controversy. Typically, viruses are applied for efficient intracellular delivery of genes/transcription factors to generate iPS cells. However, the viral genomic integration may cause a risk of mutation as well as tumor formation therefore limits its clinical application.
View Article and Find Full Text PDFWe explore the possibility of characterizing sperm cells without the need to stain them using spectral and fluorescence lifetime analyses after multi-photon excitation in an insect model. The autofluorescence emission spectrum of sperm of the common bedbug, Cimex lectularius, was consistent with the presence of flavins and NAD(P)H. The mean fluorescence lifetimes showed smaller variation in sperm extracted from the male (tau m, τm = 1.
View Article and Find Full Text PDFJ Med Imaging (Bellingham)
January 2015
We report on a flexible multipurpose nonlinear microscopic imaging system based on a femtosecond excitation source and a photonic crystal fiber with multiple miniaturized time-correlated single-photon counting detectors. The system provides the simultaneous acquisition of e.g.
View Article and Find Full Text PDFOptoporation, the permeabilization of a cell membrane by laser pulses, has emerged as a powerful non-invasive and highly efficient technique to induce transfection of cells. However, the usual tedious manual targeting of individual cells significantly limits the addressable cell number. To overcome this limitation, we present an experimental setup with custom-made software control, for computer-automated cell optoporation.
View Article and Find Full Text PDFWe present a femtosecond-laser based nanoprocessing system for transient optical cell membrane poration to allow the introduction of foreign molecules into the interior of a cell with very high throughput. In the setup, cells flow through a micro-flow tube for spatial confinement and are simultaneously targeted by fs laser radiation. Beam-shaping generates a focal geometry along a line which is scanned across the micro-flow cell to increase the number of reachable cells.
View Article and Find Full Text PDFAn ultracompact high-resolution multiphoton cryomicroscope with a femtosecond near infrared fiber laser has been utilized to study the cellular autofluorescence during freezing and thawing of cells. Cooling resulted in an increase of the intracellular fluorescence intensity followed by morphological modifications at temperatures below -10 °C, depending on the application of the cryoprotectant DMSO and the cooling rate. Furthermore, fluorescence lifetime imaging revealed an increase of the mean lifetime with a decrease in temperature.
View Article and Find Full Text PDFThermally-induced changes in Arabidopsis thaliana leaves were investigated with a novel cryo microscope by multiphoton, fluorescence lifetime and spectral imaging as well as micro spectroscopy. Samples were excited with fs pulses in the near-infrared range and cooled/heated in a cryogenic chamber. The results show morphological changes in the chloroplast distribution as well as a shift from chlorophyll to cell-wall fluorescence with decreasing temperature.
View Article and Find Full Text PDFWe present combined epi-coherent anti-Stokes Raman scattering (CARS) and multiphoton imaging with both chemical discrimination and subcellular resolution on human skin in vivo. The combination of both image modalities enables label-free imaging of the autofluorescence of endogenous fluorophores by two-photon excited fluorescence, as well as imaging of the distribution of intercellular lipids, topically applied substances and water by CARS. As an example for medical imaging, we investigated healthy and psoriasis-affected human skin with both image modalities in vivo and found indications for different lipid distributions on the cellular level.
View Article and Find Full Text PDFIn vivo multiphoton tomography with a wavelength-tunable femtosecond laser has been performed to investigate the autofluorescence intensity of major endogenous fluorophores of human skin in dependence on the excitation wavelength. In high-resolution multiphoton images of different skin layers, clear trends were found for fluorophores like keratin, NAD(P)H, melanin as well as for the elastin and collagen networks. The analysis of the measurements is supplemented by additional measurements of fluorescence lifetime imaging and signal-decay curves by time-correlated single-photon counting.
View Article and Find Full Text PDFNonlinear optical imaging of human skin and of polychromatic microspheres was carried out to compare and evaluate the imaging properties of three different excitation femtosecond lasers: a spectrally tunable 80 MHz Ti: sapphire oscillator that produced 100 fs pulses (spectral width ∼10 nm) and two ultrabroadband Ti: sapphire oscillators with repetition rates of 85 MHz and 1 GHz. The latter of these two and the 100 fs laser were combined with a laser scanning microscope (TauMap). The intensities of images of the polychromatic microsphere samples obtained with both lasers are in accordance with the usual dependence of two-photon processes on laser pulse parameters, i.
View Article and Find Full Text PDFThe dissociative ionization of deuterium chloride (DCl) has been investigated by employing femtosecond laser pulses at 805 nm. The product branching ratio D(+)/Cl(+) of the fragments D(+) and Cl(+) is strongly affected by the chirp alpha of the laser pulses. The ratio can be controlled by a factor of 3 ranging from D(+)/Cl(+) = 0.
View Article and Find Full Text PDF