Publications by authors named "Hans Elwing"

In previous investigations, the authors have examined the adsorption of albumin, immunoglobulin, and fibrinogen to a series of acrylate polymers with different backbone and side-group flexibility. The authors showed that protein adsorption to acrylates with high flexibility, such as poly(lauryl methacrylate) (PLMA), tends to preserve native conformation. In the present study, the authors have continued this work by examining the conformational changes that occur during the binding of complement factor 3 (C3) and coagulation factor XII (FXII).

View Article and Find Full Text PDF

The release of copper (Cu) and zinc (Zn) from vessels and leisure crafts coated with antifouling paints can pose a threat to water quality in semi-enclosed areas such as harbors and marinas as well as to coastal archipelagos. However, no reliable, practical and low-cost method exists to measure the direct release of metals from antifouling paints. Therefore, the paint industry and regulatory authorities are obliged to use release rate measurements derived from either mathematical models or from laboratory studies.

View Article and Find Full Text PDF

A challenge for the next generation marine antifouling (AF) paints is to deliver minimum amounts of biocides to the environment. The candidate AF compound medetomidine is here shown to be released at very low concentrations, ie ng ml(-1) day(-1). Moreover, the release rate of medetomidine differs substantially depending on the formulation of the paint, while inhibition of barnacle settlement is independent of release to the ambient water, ie the paint with the lowest release rate was the most effective in impeding barnacle colonisation.

View Article and Find Full Text PDF

The efficacy of antifouling coatings designed to minimise the release of biocide, either by embedded (non-covalent) or tethered (covalently bonded) biocides, relies on sufficient bioavailability of the active compound upon contact between the organism and the coating. This investigation is focused on whether coating hardness affects the efficacy of embedded coating systems. Two experimental, non-eroding and waterborne latex paint formulations composed mainly of polystyrene (PS) or polyvinyl versatate (PV) were chosen for their difference in mechanical properties measured in terms of Buchholz indentation resistance.

View Article and Find Full Text PDF

The C2 domain of PKCε binds to negatively charged phospholipids but little is known so far about the docking orientation of this domain when it is bound. By using a FRET assay we have studied the binding of this domain to model membranes. We have also used ATR-Fourier transform infrared spectroscopy with polarized light (ATR-FTIR) to determine the docking mode by calculating the β-sandwich orientation when the domain is bound to different types of model membranes.

View Article and Find Full Text PDF

The immune complement (IC) is a cell-free protein cascade system, and the first part of the innate immune system to recognize foreign objects that enter the body. Elevated activation of the system from, for example, biomaterials or medical devices can result in both local and systemic adverse effects and eventually loss of function or rejection of the biomaterial. Here, the researchers have studied the effect of surface nanotopography on the activation of the IC system.

View Article and Find Full Text PDF

Rosin-based coatings loaded with 0.1% (w/v) ivermectin were found to be effective in preventing colonization by barnacles (Balanus improvisus) both on test panels as well as on yachts for at least two fouling seasons. The leaching rate of ivermectin was determined by mass-spectroscopy (LC/MS-MS) to be 0.

View Article and Find Full Text PDF

A single-chip electrochemical method based on impedance measurements in resonance mode has been employed to study lipid monolayer and bilayer formation on hydrophobic alkanethiolate and SiO(2) substrates, respectively. The processes were monitored by temporally resolving changes in interfacial capacitance and resistance, revealing information about the rate of formation, coverage, and defect density (quality) of the layers at saturation. The resonance-based impedance measurements were shown to reveal significant differences in the layer formation process of bilayers made from (i) positively charged lipid 1-palmitoyl-2-oleoyl-sn-glycero-3-ethylphosphocholine (POEPC), (ii) neutral lipid 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) on SiO(2), and (iii) monolayers made from POEPC on hydrophobic alkanethiolate substrates.

View Article and Find Full Text PDF

When an artificial biomaterial (e.g., a stent or implantable pump) is exposed to blood, plasma proteins immediately adhere to the surface, creating a new interface between the biomaterial and the blood.

View Article and Find Full Text PDF

Noble metals are interesting biomaterials for a number of reasons, e.g., their chemical inertness and relative mechanical softness, silver's long known antimicrobial properties, and the low allergenic response shown by gold.

View Article and Find Full Text PDF

By combining quartz crystal microbalance with dissipation monitoring (QCM-D) and surface plasmon resonance (SPR), the organic mass, water content, and corresponding protein film structure of fibrinogen adsorbed to acrylic polymeric substrates with varying polymer chain flexibility was investigated. Albumin and immunoglobulin G were included as reference proteins. For fibrinogen, the QCM-D model resulted in decreased adsorbed mass with increased polymer chain flexibility.

View Article and Find Full Text PDF

Gold surfaces and structures modified with octanedithiol were reacted with dithiothreitol prior to immersion in buffered solutions of charge stabilized gold nanoparticles. The procedure gives a dithiol layer with adequate properties for a homogeneous octanedithiol monolayer and uniform and reproducible gold nanoparticle binding. The distance between the adsorbing particles is controlled by the particle electrostatic interactions and can be carefully tuned by variation of ionic strength.

View Article and Find Full Text PDF

The interaction between cells and biomaterials has been mimicked using nylon microparticles as pseudo-cells and PLMA and PIBMA as biomaterial model acrylate polymers. The shift of fundamental resonance frequencies was negative for both polymers, indicating mass-coupling to the sensor surface. The shifts of the 3rd, 5th and 7th overtone frequencies were initially positive for both polymers, indicating a particle slip or wobbling on the surface.

View Article and Find Full Text PDF

Adhesive materials extracted from the brown algae Fucus Serratus were studied. These adhesives are composed of cross-linked alginate and polyphenols oxidized in the presence of KI or KBr. All formulations were capable of adhering to a variety of surfaces, however the adhesion properties were influenced by the halide used.

View Article and Find Full Text PDF

A recently developed variant of quartz crystal microbalance (QCM) called QCM-with dissipation monitoring (QCM-D) allows simultaneous and simple measurements of changes in adsorbed mass as well as the viscoelastic property (D-factor) of deposited protein layers on the sensor surface. We have taken the QCM-D technology a step further and demonstrated its advantages in the study of protein assembly as a consequence of surface induced immune complement activation, or contact activated blood coagulation. In the present study we have continued our QCM-D investigations of surface assembly of fibrin clot formation and complement activation and incubated differently modified quartz sensor surfaces in blood plasma and sera.

View Article and Find Full Text PDF

We describe the effect of eight different imidazoline/guanidinium compounds on the settlement and metamorphosis of larvae of the barnacle Balanus improvisus. These agents were chosen on the basis of their similar pharmacological classification in vertebrates and their chemical similarity to medetomidine and clonidine, previously described as highly potent settlement inhibitors (nanomolar range). Seven of the tested compounds were found to inhibit settlement in a dose-dependent manner in concentrations ranging from 100 nM to 10 microM without any significant lethal effects.

View Article and Find Full Text PDF

The reduction of bacterial biofilm formation on stainless steel surfaces by N-acetyl-L-cysteine (NAC) is attributed to effects on bacterial growth and polysaccharide production, as well as an increase in the wettability of steel surfaces. In this report, we show that NAC-coated stainless steel and polystyrene surfaces affect both the initial adhesion of Bacillus cereus and Bacillus subtilis and the viscoelastic properties of the interaction between the adhered bacteria and the surface. A quartz crystal microbalance with dissipation was shown to be a powerful and sensitive technique for investigating changes in the applied NAC coating for initial cell surface interactions of bacteria.

View Article and Find Full Text PDF

The influence of protein stability on the adsorption and desorption behavior to surfaces with fundamentally different properties (negatively charged, positively charged, hydrophilic, and hydrophobic) was examined by surface plasmon resonance measurements. Three engineered variants of human carbonic anhydrase II were used that have unchanged surface properties but large differences in stability. The orientation and conformational state of the adsorbed protein could be elucidated by taking all of the following properties of the protein variants into account: stability, unfolding, adsorption, and desorption behavior.

View Article and Find Full Text PDF

We have studied aspects of the molecular background to immune complement activation on solid surfaces. Quartz crystal microbalance with dissipation monitoring (QCM-D) sensor surfaces were modified by means of spin coating with polystyrene (PS) or sputtering of silicon dioxide (SiO2). The IC activation on modified QCM-D surfaces was investigated by incubation in serum, followed by determinations of the amounts of bound C3 fragments (C3c) at the surface.

View Article and Find Full Text PDF

We have shown that a phenolic polymer (PP) extracted from Fucus serratus can be cross-linked using a vanadium-dependent bromoperoxidase (BPO). The methanol extracted PP was adsorbed to a quartz crystal sensor and the cross-linking was initiated by the addition of BPO, KBr, and H2O2. The decreased dissipation upon addition of the cross-linking agents, as measured with the quartz crystal microbalance with dissipation monitoring (QCM-D) method, was interpreted as intramolecular cross-links were formed between different phloroglucinol units in the PP.

View Article and Find Full Text PDF

Changing the length of the alkyl ester side chain in poly(alkyl methacrylates) provides a unique opportunity to systematically vary the mobility of the polymer chains, or in other words vary the glass transition temperature (T(g)), without greatly affect the solid surface energy (gamma(s)) of the polymer. A series of poly(alkyl methacrylate) coatings was therefore analysed with regard to the human immune complement (IC) activation and the surface associated blood plasma coagulation cascade (CC) properties. For the IC and CC measurements we used a quartz crystal microbalance (QCM) where we modified the chemistry of the sensor surface by applying 10-30 nm thick poly(alkyl methacrylate) coatings.

View Article and Find Full Text PDF

In a previous study we found two agents, the alpha(2)-agonist medetomidine ((+/-)-4-[1-(2,3-dimethylphenyl)ethyl]-1H-imidazole) and the alpha(2)-agonist clonidine (2-(2,6-dichloroanilino)-2-imidazoline), that specifically and efficiently impede settlement of the barnacle Balanus improvisus, one of the most serious biofouling organisms in Swedish waters. Medetomidine, but not clonidine, is known to adsorb to solid polystyrene (PS) surfaces in the presence of salt, a feature that is of particular interest in attempts to develop an efficient antifouling surface. We show that medetomidine, but not clonidine, has a significant ability to adsorb to untreated (hydrophobic) PS in two different incubation media: filtered seawater (FSW) and deionized water (mQ).

View Article and Find Full Text PDF

The interaction between neutrophil granulocytes and platelets is considered to play an important role in the inflammatory process induced by an implanted foreign material. However, the cellular mechanisms involved remain incompletely understood. We used a luminol-dependent chemiluminescence (CL) technique to analyze the generation of reactive oxygen species (ROS) in human neutrophils interacting with different plasma protein-coated surfaces in the presence or absence of unstimulated or stimulated platelets.

View Article and Find Full Text PDF

N-Acetyl-L-cysteine (NAC) is used in medical treatment of patients with chronic bronchitis. The positive effects of NAC treatment have primarily been attributed to the mucus-dissolving properties of NAC, as well as its ability to decrease biofilm formation, which reduces bacterial infections. Our results suggest that NAC also may be an interesting candidate for use as an agent to reduce and prevent biofilm formation on stainless steel surfaces in environments typical of paper mill plants.

View Article and Find Full Text PDF

We have quantified surface associated coagulation of human blood plasma with a recently developed methodological system consisting of a Quartz Crystal Microbalance with Dissipation monitoring (QCM-D), a method that measures the weight of adsorbed molecules on surfaces as a function of frequency shifts of a quartz crystal. Further, it measures the damping energy (i.e.

View Article and Find Full Text PDF