Publications by authors named "Hans Dieter Gerber"

Virtual combinatorial libraries are prevalent in drug discovery due to improvements in the prediction of synthetic reactions that can be performed. This has gone hand in hand with the development of virtual screening capabilities to effectively screen the large chemical spaces spanned by exhaustive enumeration of reaction products. In this study, we generated a small-molecule dipeptide mimic library to target proteins binding small peptides.

View Article and Find Full Text PDF

In tRNA, tRNA, tRNA, and tRNA of most bacteria and eukaryotes, the anticodon wobble position may be occupied by the modified nucleoside queuosine, which affects the speed and the accuracy of translation. Since eukaryotes are not able to synthesize queuosine de novo, they have to salvage queuine (the queuosine base) as a micronutrient from food and/or the gut microbiome. The heterodimeric Zn containing enzyme tRNA-guanine transglycosylase (TGT) catalyzes the insertion of queuine into the above-named tRNAs in exchange for the genetically encoded guanine.

View Article and Find Full Text PDF

In recent years, crystallographic fragment screening has matured into an almost routine experiment at several modern synchrotron sites. The hits of the screening experiment, i.e.

View Article and Find Full Text PDF

Drug optimization is guided by biophysical methods with increasing popularity. In the context of lead structure modifications, the introduction of methyl groups is a simple but potentially powerful approach. Hence, it is crucial to systematically investigate the influence of ligand methylation on biophysical characteristics such as thermodynamics.

View Article and Find Full Text PDF

Dnmt2 methylates cytosine at position 38 of tRNA in a variety of eukaryotic organisms. A correlation between the presence of the hypermodified nucleoside queuosine (Q) at position 34 of tRNA and the Dnmt2 dependent C38 methylation was recently found in vivo for S. pombe and D.

View Article and Find Full Text PDF

Hydrogen atoms play a key role in protein-ligand recognition. They determine the quality of established H-bonding networks and define the protonation of bound ligands. Structural visualization of H atoms by X-ray crystallography is rarely possible.

View Article and Find Full Text PDF

The binding of sulfonamides to human carbonic anhydrase II (hCAII) is a complex and long-debated example of protein-ligand recognition and interaction. In this study, we investigate the para-substituted n-alkyl and hydroxyethylene-benzenesulfonamides, providing a complete reconstruction of their binding pathway to hCAII by means of large-scale molecular dynamics simulations, density functional calculations, surface plasmon resonance (SPR) measurements, and X-ray crystallography experiments. Our analysis shows that the protein-ligand association rate (kon) dramatically increases with the ligand's hydrophobicity, pointing to the existence of a prebinding stage largely stabilized by a favorable packing of the ligand's apolar moieties with the hCAII "hydrophobic wall".

View Article and Find Full Text PDF

Pioneering inspiration: Right next to the former laboratories of Johannes Hartmann, the first so-called "Professor of Chymiatrie", the 2015 Frontiers in Medicinal Chemistry meeting was held last March at Philipps University in Marburg, Germany. Herein we give readers an idea of what it was like to attend the conference, which was organized jointly by the DPhG, GDCh, and SCS. Along with the lectures, we also describe the poster sessions, social program, and awards.

View Article and Find Full Text PDF

Bacterial tRNA-guanine transglycosylase (Tgt) catalyses the exchange of the genetically encoded guanine at the wobble position of tRNAs(His,Tyr,Asp,Asn) by the premodified base preQ1, which is further converted to queuine at the tRNA level. As eucaryotes are not able to synthesise queuine de novo but acquire it through their diet, eucaryotic Tgt directly inserts the hypermodified base into the wobble position of the tRNAs mentioned above. Bacterial Tgt is required for the efficient pathogenicity of Shigella sp, the causative agent of bacillary dysentery and, hence, it constitutes a putative target for the rational design of anti-Shigellosis compounds.

View Article and Find Full Text PDF

To thoroughly study the functional role of prokaryotic t-RNA-guanine-transglycosylases which are essential in the pathogenesis of shigellosis, novel efficient, high-yielding synthetic approaches for preQ(1) base, Q base, as well as for (ent)-Q base mainly employing cheap and readily available starting materials have been developed. Q base as well as (ent)-Q base are accessible starting from preQ(1) base via nucleophilic substitution reactions with appropriately decorated halocyclopentenyl synthons, prior to that prepared from naturally occurring carbohydrates.

View Article and Find Full Text PDF

Fragment-based drug discovery has gained a foothold in today's lead identification processes. We present the application of in silico fragment-based screening for the discovery of novel lead compounds for the metalloendoproteinase thermolysin. We have chosen thermolysin to validate our screening approach as it is a well-studied enzyme and serves as a model system for other proteases.

View Article and Find Full Text PDF

Malaria, caused by protozoa of the genus Plasmodium, remains one of the most dreadful infectious diseases worldwide killing more than 1 million people per year. The emergence of multidrug-resistant parasites highly demands a steadfast and continuous search not only for new targets but also for new anti-infectives addressing the known ones. As proteases in general have been proven to be excellent drug targets and the development of inhibitors has frequently resulted in approved drugs, this review will only focus on the proteases of Plasmodium falciparum as drug targets.

View Article and Find Full Text PDF

Eubacterial tRNA-guanine transglycosylase (TGT) is involved in the hypermodification of cognate tRNAs, leading to the exchange of G34 by preQ1 at the wobble position in the anticodon loop. Mutation of the tgt gene in Shigella flexneri results in a significant loss of pathogenicity of the bacterium due to inefficient translation of a virulence protein mRNA. Herein, we describe the discovery of a ligand with an unexpected binding mode.

View Article and Find Full Text PDF