Exposure to diverse microbial communities early in life can help support healthy human immune function. Soil microbiomes in public and private urban green spaces are potentially important sources of contact with diverse microbiomes for much of the global population. However, we lack understanding of how soil microbial communities vary across and within urban green spaces, and whether these patterns vary across microbial kingdoms; closing this knowledge gap may help us optimise green spaces' capacities to provide this ecosystem service.
View Article and Find Full Text PDFBackground And Aims: The petaline operculum that covers the inner whorls until anthesis and the woody capsule that develops after fertilization are reproductive structures of eucalypts that protect the flower and seeds. Although they are distinct organs, they both develop from flower buds and this common ontogeny suggests shared genetic control. In Eucalyptus globulus their morphology is variable and we aimed to identify the quantitative trait loci (QTL) underlying this variation and determine whether there is common genetic control of these ecologically and taxonomically important reproductive structures.
View Article and Find Full Text PDFUnderstanding the effects of logging and fire on forest soil communities is integral to our knowledge of forest ecology and effective resource management. The resulting changes in soil biota have substantial impacts on forest succession and associated ecosystem processes. We quantified bacterial and fungal abundance, diversity and community composition across a logging and burn severity gradient, approximately one month after fire, in temperate wet eucalypt forests in Tasmania, Australia.
View Article and Find Full Text PDFDrought is a major stress impacting forest ecosystems worldwide. We utilized quantitative trait loci (QTL) analysis to study the genetic basis of variation in (a) drought resistance and recovery and (b) candidate traits that may be associated with this variation in the forest tree Eucalyptus globulus. QTL analysis was performed using a large outcrossed F mapping population from which 300 trees were phenotyped based on the mean performance of their open-pollinated F progeny.
View Article and Find Full Text PDFIntumescence is a nonpathogenic physiological disorder characterized by leaf blistering. This disorder can affect growth and development in glasshouses and growth chambers and may be confused with pathogenic diseases. We used quantitative trait loci (QTL) analysis to examine the genetic basis of variation in intumescence severity in Eucalyptus globulus, and test for colocation with previously detected QTLs for pathogen susceptibility.
View Article and Find Full Text PDF