Publications by authors named "Hanqing Feng"

Recombinant myofibril-bound serine proteinase (rMBSP) was successfully expressed in GS115 in our laboratory. However, low production of rMBSP in shake flask constraints further exploration of properties. A 5-L high cell density fermentation was performed and the fermentation medium was optimized.

View Article and Find Full Text PDF

In the process of the production of recombinant proteins by using an -mediated transient gene expression system, the effectiveness of the control of light conditions pre- and post-agroinfiltration on efficiency of transient expression is worth being evaluated. In this study, plants were used as a bioreactor to investigate the effects of different light conditions pre- and post-agroinfiltration on the transient expression of green fluorescent protein (GFP). The results showed that the plants grown under light condition for 5 weeks had the highest level of transient expression among those grown for 4-8 weeks.

View Article and Find Full Text PDF

Foot-and-mouth disease (FMD) is an acute, severe, and highly contagious infectious disease caused by foot-and-mouth disease virus (FMDV), which seriously endangers the development of animal husbandry. The inactivated FMD vaccine is the main product for the prevention and control of FMD, which has been successfully applied to control the pandemic and outbreak of FMD. However, the inactivated FMD vaccine also has problems, such as the instability of antigen, the risk of spread of the virus due to incomplete inactivation during vaccine production, and the high cost of production.

View Article and Find Full Text PDF

With the ripening of 3D printing technology and the discovery of a variety of printable materials, 3D-printed vascular stents provide new treatment options for patients with angiocardiopathy. Bioresorbable stent not only combines the advantages of metallic stent and drug-coated balloon, but also avoids the disadvantages of them. 3D printing is also an economical and efficient way to produce stents and makes it possible to construct complex structures.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers studied if tiny magnetic particles called MNPs-FeO can help rice plants grown in water when they are harmed by a chemical called 3-nitrophenol (3-NP).
  • They found that 3-NP makes the rice plants grow slower and reduces important parts like their chlorophyll, especially when more of the chemical is present.
  • When they added MNPs-FeO to the plants, it helped protect the rice from 3-NP, improved its growth, and made the plants healthier overall.
View Article and Find Full Text PDF
Article Synopsis
  • Scientists studied how a molecule called extracellular ATP (exATP) affects plant growth when the plants are hurt multiple times.
  • They found that repeated injuries made plants smaller and weaker, but also increased the level of exATP in them.
  • A special type of plant with a mutation in a gene called P2K1 showed that exATP helps control how well plants can recover from being wounded, suggesting exATP plays an important role in plant responses to injury.
View Article and Find Full Text PDF

Extracellular ATP level induced a transient increase during germination of Arabidopsis seeds, and extracellular ATP could negatively regulate the seed germination by its receptor, DORN1. Extracellular ATP (exATP) acts as a signal molecule for regulating growth, development, and responses of plants to external environments. In this study, we investigated the possible involvement of exATP in regulating the seed germination of Arabidopsis thaliana.

View Article and Find Full Text PDF

Background: In the last decades, replicating expression vectors based on plant geminivirus have been widely used for enhancing the efficiency of plant transient expression. By using the replicating expression vector derived from bean yellow dwarf virus and green fluorescent protein as a reporter, we investigated the effects of α-naphthalene acetic acid, gibberellins, and 6-benzyladenine, as three common plant growth regulators, on the plant biomass and efficiency of transient expression during the process of transient expression in Nicotiana benthamiana L. leaves.

View Article and Find Full Text PDF

Bioresorbable scaffolds have emerged as a new generation of vascular implants for the treatment of atherosclerosis, and designed to provide a temporary scaffold that is subsequently absorbed by blood vessels over time. Presently, there is insufficient data on the biological and mechanical responses of blood vessels accompanied by bioresorbable scaffolds (BRS) degradation. Therefore, it is necessary to investigate the inflexion point of degradation, the response of blood vessels, and the pathophysiological process of vascular, as results of such studies will be of great value for the design of next generation of BRS.

View Article and Find Full Text PDF

Extracellular ATP (eATP) is an important biological signal transduction molecule. Although a variety of detection methods have been extensively used in ATP sensing and analysis, accurate detection of eATP remains difficult due to its extremely low concentration and spatiotemporal distribution. Here, an eATP measurement strategy based on tetrahedral DNA (T-DNA)-modified electrode sensing platform and hybridization chain reaction (HCR) combined with G-quadruplex/Hemin (G4/Hemin) DNAzyme dual signal amplification is proposed.

View Article and Find Full Text PDF

As an important signal molecule, extracellular ATP(eATP) can regulate many physiological and biochemical responses to plant stress. In this study, the regulation of extracellular ATP(eATP) on chlorophyll content and chlorophyll fluorescence parameters of Angelica sinensis seedlings were studied under drought and low temperature stress. The results showed that all the chlorophyll content, the actual photochemical efficiency [Y(Ⅱ)], the electron transfer rate(ETR), the photochemical quenching coefficient(qP and qL) of A.

View Article and Find Full Text PDF

Wounding increased the extracellular Adenosine 5'-triphosphate (eATP) level of kidney bean leaves. Treatment with wounding or exogenous ATP increased the hydrogen peroxide (HO) content, activities of catalase and polyphenol oxidase, and malondialdehyde content in both the treated and systemic leaves. Pre-treatment with ATP-degrading enzyme, apyrase, to the wounded leaves reduced the wound-induced local and systemic increases in HO content, activities of catalase and polyphenol oxidase, and malondialdehyde content.

View Article and Find Full Text PDF

In the present work, by using tobacco cell suspension and wheat seedlings, we studied that eATP (extracellular ATP) released by copper (Cu) stress could act as diffusible signal in alleviating the Cu stress-induced cell death. A semipermeable membrane was fixed in the middle of a plastic box to divide the box into two equal compartments (A and B, respectively). This semipermeable membrane can prevent direct cell-to-cell (or seedling-to-seedling) contact and the diffusion of the macromolecules [such as ATPase (adenosine 5'-triphosphatase)] between these two compartments.

View Article and Find Full Text PDF

In this study we investigate the effects of cadmium stress on Astragalus membranaceus seedlings and the alleviative effects of attapulgite clay in growth substrate on cadmium stress to A. membranaceus seedlings. The results showed that the Y (Ⅱ) (effective photochemical quantum yield of PSⅡ photosynthetic), qP(photochemical quenching coefficient), ETR(the rate of non-cyclic electrontransport through PSⅡ), and chlorophyll content of the leaves were significantly decreased with the increase of cadmium concentrations, while the cadmium content, non-photochemical quenching(NPQ, qN) of the leaves and cadmium content, MDA content, plasma membrane permeability, and the damage degree of root apical membrane of the roots were significantly increased.

View Article and Find Full Text PDF

Hypertonic salt stress with different concentrations of NaCl increased the levels of extracellular ATP of Arabidopsis leaves. And, hypertonic salt stress decreased the levels of F /F (the maximal efficiency of photosystem II), Φ (the photosystem II operating efficiency), qP (photochemical quenching), and intracellular ATP (iATP) production. The treatment with β,γ-methyleneadenosine 5'-triphosphate (AMP-PCP), which can exclude extracellular ATP from its binding sites of extracellular ATP receptors, caused a further decrease in the levels of F /F , Φ qP, and iATP production of the salt-stressed Arabidopsis leaves, while the addition of exogenous ATP rescued the inhibitory effects of AMP-PCP on Φ , qP, and iATP production under hypertonic salt stress.

View Article and Find Full Text PDF

Adenosine 5'-triphosphate (ATP) has been regarded as an intracellular energy currency molecule for many years. In recent decades, it has been determined that ATP is released into the extracellular milieu by animal, plant and microbial cells. In animal cells, this extracellular ATP (eATP) functions as a signalling compound to mediate many cellular processes through its interaction with membrane-associated receptor proteins.

View Article and Find Full Text PDF

The major source of endogenous hydrogen peroxide is generally thought to be the respiratory chain of bacteria and mitochondria. In our previous works, mesosome structure was induced in cells during rifampicin effect, and the mesosome formation is always accompanied by excess hydrogen peroxide accumulation in bacterial cells. However, the underlying mechanisms of hydrogen peroxide production and the rationale behind it remain still unknown.

View Article and Find Full Text PDF

Plants in their natural environment frequently face various abiotic stresses, such as drought, high salinity, and chilling. Plant mitochondria contain an alternative oxidase (AOX), which is encoded by a small family of nuclear genes. AOX genes have been shown to be highly responsive to abiotic stresses.

View Article and Find Full Text PDF

Treatment with solutions containing high concentrations of NaCl (200 or 300 mM) induced cell death in rice (Oryza sativa L.) roots, as well as the application of exogenous hydrogen peroxide (H2O2). Moreover, the pretreatment with dimethylthiourea (DMTU), a scavenger of H2O2, partially alleviated the root cell death induced by 200 mM NaCl.

View Article and Find Full Text PDF

The toxic effects of H2S on plants are well documented. However, the molecular mechanisms reponsible for inhibition of plants by H2S are still not completely understood. We determined the effects of NaHS in the range of 0.

View Article and Find Full Text PDF

To survive, plants possess elaborate defence mechanisms to protect themselves against virus or pathogen invasion. Recent studies have suggested that plant mitochondria may play an important role in host defence responses to biotic stresses. In contrast with animal mitochondria, plant mitochondria possess a unique respiratory pathway, the cyanide-insensitive alternative pathway, which is catalysed by the alternative oxidase (AOX).

View Article and Find Full Text PDF

Drought stress significantly enhanced the capacity of the alternative respiratory pathway and induced AOX1a and AOX1b transcripts in rice seedling leaves. The drought-stressed seedlings pretreated with the inhibitor of the alternative respiratory pathway, 1 mM salicylhydroxamic acid, had a lower level of relative water content than the seedlings either subjected to drought or salicylhydroxamic acid treatment alone. This observation suggests that the alternative respiratory pathway could play a role in the tolerance of rice seedlings to drought stress.

View Article and Find Full Text PDF

Ultrastructural alteration and hydrogen peroxide localization were examined in Xanthomonas campestris pv. phaseoli during rifampicin effect using transmission electron microscopy. Bacterial cells were treated with rifampicin and then were examined by electron microscopy to observe the changes of ultrastructure or hydrogen peroxide accumulation in living cells that took place before lysis.

View Article and Find Full Text PDF