Biodegradation is recognized as the main route for the decomposition of phthalic acid esters (PAEs) in nature, but the fate of PAEs in marine ecosystems is not well understood. Herein, a novel marine bacterium, Gordonia sihwaniensis RL-BY03, was identified and analyzed for its ability to degrade PAEs. Furthermore, the metabolic mechanism of di-(2-ethylhexyl) phthalate (DEHP) was examined through UPLC-MS/MS and genomic analysis.
View Article and Find Full Text PDFNitrogen fixation, occurring through the symbiotic relationship between legumes and rhizobia in root nodules, is crucial in sustainable agriculture. Nodulation and soybean production are influenced by low levels of phosphorus stress. In this study, we discovered a MADS transcription factor, , which is preferentially expressed in nodules and displays significantly increased expression under conditions of phosphate (Pi) deficiency.
View Article and Find Full Text PDFPhthalic acid esters (PAEs) are known as the most widely used plasticizer as well as one of the ubiquitously distributed emerging pollutants. Biodegradation and bioremediation via application of PAEs-degrading microbes is promising. In this study, a novel marine microbe, Gordonia hongkongensis RL-LY01, was isolated from mangrove sediment showing high di-(2-ethylhexyl) phthalate (DEHP) degradation capacity.
View Article and Find Full Text PDFMycolicibacterium phocaicum RL-HY01, a marine bacterial strain with the capability to degrade phthalic acid esters (PAEs), was isolated from Zhanjiang Bay, China. Here, the complete genome sequence of strain RL-HY01 was presented. The genome of strain RL-HY01 contains one circular chromosome of 6,064,759 bp with a G + C content of 66.
View Article and Find Full Text PDFBackground: Due to global warming, drought climates frequently occur on land, and despite being drought resistant, pineapples are still subjected to varying degrees of drought stress. Plant growth regulators can regulate the stress tolerance of plants through hormonal effects. This experiment aims to investigate the regulatory effects of different plant growth regulators on Tainong- 16 and MD-2 Pineapple when subjected to drought stress.
View Article and Find Full Text PDFSalt stress poses physiological drought, ionic toxicity and oxidative stress to plants, which causes premature senescence and death of the leaves if the stress sustained. Salt tolerance varied between different rice varieties, but how different rice varieties respond at the early stage of salt stress has been seldom studied comprehensively. By employing third generation sequencing technology, we compared gene expressional changes in leaves of three rice varieties that varied in their level of tolerance after salt stress treatment for 6 h.
View Article and Find Full Text PDFSoil salinization has been recognized as one of the main factors causing the decrease of cultivated land area and global plant productivity. Application of salt tolerant plants and improvement of plant salt tolerance are recognized as the major routes for saline soil restoration and utilization. Sea rice 86 (SR86) is known as a rice cultivar capable of growing in saline soil.
View Article and Find Full Text PDFBackground: Chilling injury of mung bean (Vigna radiata (L.)) during the blooming and podding stages is a major agricultural threat in Northeast China. Uniconazole (UNZ) can alleviate water deficit stress in soybean and waterlogging stress in mung bean.
View Article and Find Full Text PDFPhthalic acid esters (PAEs) are one of the most widely used plasticizers and the well-studied environmental pollutants with endocrine disrupting properties. Investigation about PAEs in terrestrial ecosystem has been extensively conducted while the fate of PAEs in marine environment remains underexplored. In this study, a novel di-(2-ethylhexyl) phthalate (DEHP) degrading marine bacterial strain, Mycolicibacterium phocaicum RL-HY01, was isolated and characterized from intertidal sediments.
View Article and Find Full Text PDFMol Plant Microbe Interact
November 2020
The phytopathogen subsp. causes Stewart's wilt disease in lucky bamboo. Here, we report the complete genome of subsp.
View Article and Find Full Text PDFDi-(2-ethylhexyl) phthalate (DEHP) is the most widely used plasticizer and a representative endocrine disrupting chemical. The toxicological effects of DEHP on environmental and human health have been widely investigated. In this study, the DEHP-degrading bacterial strain RL-JC02 was isolated from red soil with long-term usage of plastic mulch, and it was identified as Gordonia terrae by 16S rRNA gene analysis coupled with physiological and biochemical characterization.
View Article and Find Full Text PDFThe genus is ubiquitously distributed in different natural environments. Many xenobiotic-degrading strains have been isolated and described; however, few have been systematically characterized with regard to multiple interrelated metabolic pathways and the genes that encode them. In this study, the biodegradability of seven aromatic compounds by sp.
View Article and Find Full Text PDFAs an aquatic pathogen widely present in aquatic food, Vibrio parahaemolyticus causes outbreaks of gastroenteritis across the globe. Virulence factors of V. parahaemolyticus increases with the amount of spoilage in aquatic organisms including shrimp, but mechanisms regulating its virulence factors are not well understood.
View Article and Find Full Text PDFVibrio parahaemolyticus is a seafood opportunistic pathogen. There are evidences suggesting that virulence skills, including hemolytic activity and biofilm formation, are regulated by the luxM/luxS-dependent quorum-sensing system in V. parahaemolyticus, and their regulatory mechanism is not well understood.
View Article and Find Full Text PDFAtrazine (2-chloro-4-ethylamino-6-isopropylamino-1,3,5-triazine) is a worldwide-used herbicide and often detected in agricultural soils and groundwater at concentrations above the permitted limit, because of its high mobility, persistence, and massive application. This study applied pot experiments to investigate the atrazine contents and speciation during the phytoremediation process by Pennisetum alopecuroides (L.) Spreng.
View Article and Find Full Text PDFVermicomposting is an effective and environmentally friendly approach for eliminating soil organic contamination. Atrazine is one of the most commonly applied triazinic herbicides and frequently detected in agricultural soils. This study investigated the roles and mechanisms of two earthworm species (epigeic Eisenia foetida and endogeic Amynthas robustus) in microbial degradation of atrazine.
View Article and Find Full Text PDFAppl Microbiol Biotechnol
February 2018
Phthalic acid esters (PAEs) have long been known as the most widely used plasticizer with a broad range of industrial application. PAEs are ubiquitous in different environments and our daily life due to their large and widespread application. Recent PAEs research mainly focused on their environmental fate (including leaching, migration, transformation) and toxicology and risk assessment.
View Article and Find Full Text PDFThe ecological effect of earthworms on the fate of soil pentachlorophenol (PCP) differs with species. This study addressed the roles and mechanisms by which two earthworm species (epigeic Eisenia fetida and endogeic Amynthas robustus E. Perrier) affect the soil microbial community and enzyme activity during the bioremediation of PCP-contaminated soils.
View Article and Find Full Text PDFThe blast resistance gene Pik-p, mapping to the Pik locus on the long arm of rice chromosome 11, was isolated by map-based in silico cloning. Four NBS-LRR genes are present in the target region of cv. Nipponbare, and a presence/absence analysis in the Pik-p carrier cv.
View Article and Find Full Text PDFExcellent inbred-lines of maize,340 and 4112, which were used largely in hybridized combination were transformed with Agrobacterium tumefaciens. The immature embryos and their original calli were infected by A.tumefaciens LBA4404 containing plasmid pGBIL04.
View Article and Find Full Text PDF