Publications by authors named "Hanping Qi"

Background: Cardiac remodeling is a common pathological feature in many cardiac diseases, characterized by cardiac hypertrophy and fibrosis. Triptolide (TP) is a natural compound derived from Tripterygium wilfordii Hook F. However, the related mechanism of it in cardiac remodeling has not been fully understood.

View Article and Find Full Text PDF

Long non-coding RNAs (lncRNAs) are expressed aberrantly in cardiac disease, but their roles in cardiac hypertrophy are still unknown. Here we sought to identify a specific lncRNA and explore the mechanisms underlying lncRNA functions. Our results revealed that lncRNA Snhg7 was a super-enhancer-driven gene in cardiac hypertrophy by using chromatin immunoprecipitation sequencing (ChIP-seq).

View Article and Find Full Text PDF

The molecular characteristics of ferroptosis in cardiac hypertrophy have been rarely studied. Especially, there have been no studies to investigate the regulatory mechanisms of docosahexaenoic acid (DHA) on ferroptosis in cardiac hypertrophy. This study was designed to determine the role of ferroptosis in microvascular injury, and investigate the contribution of DHA in suppressing ferroptosis and preventing pressure overload-mediated endothelial damage.

View Article and Find Full Text PDF

Cardiac microvascular dysfunction is associated with cardiac hypertrophy and can eventually lead to heart failure. Dysregulation of long non-coding RNAs (lncRNAs) has recently been recognized as one of the key mechanisms involved in cardiac hypertrophy. However, the potential roles and underlying mechanisms of lncRNAs in cardiac microvascular dysfunction have not been explicitly delineated.

View Article and Find Full Text PDF

Cardiac hypertrophy is a common pathological change accompanied by various cardiovascular diseases; however, its underlying mechanisms remain elusive. Mounting evidence indicates that long non-coding RNAs (lncRNAs) are novel transcripts involved in regulating multiple biological processes. However, little is known about their role in regulating cardiac hypertrophy.

View Article and Find Full Text PDF

Acute myocardial infarction (AMI) is a type of cardiovascular diseases that severely threatens human being, but the mechanisms have not been thoroughly clarified. Here, we detected that microRNA-15a-5p (miR-15a-5p) was up-regulated in AMI. Knockdown of miR-15a-5p reduced cell mortality in hypoxic-treated myocardial cells.

View Article and Find Full Text PDF

The RNA-binding protein QKI belongs to the hnRNP K-homology domain protein family, a well-known regulator of pre-mRNA alternative splicing and is associated with several neurodevelopmental disorders. Qki is found highly expressed in developing and adult hearts. By employing the human embryonic stem cell (hESC) to cardiomyocyte differentiation system and generating QKI-deficient hESCs (hESCs-QKI) using CRISPR/Cas9 gene editing technology, we analyze the physiological role of QKI in cardiomyocyte differentiation, maturation, and contractile function.

View Article and Find Full Text PDF

Emerging evidence reveals that autophagy plays crucial roles in cardiac hypertrophy. Long noncoding RNAs (lncRNAs) are novel transcripts that function as gene regulators. However, it is unclear whether lncRNAs regulate autophagy in cardiac hypertrophy.

View Article and Find Full Text PDF

Cardiac hypertrophy, a response of the heart to increased workload, is a major risk factor for heart failure. Myostatin (MSTN) is an inhibitor of myogenesis, regulating the number and size of skeletal myocytes. In recent years, cardiomyocyte autophagy also has been considered to be involved in controlling the hypertrophic response.

View Article and Find Full Text PDF

Increasing neuropeptide Y (NPY) has been shown to be a risk factor for cardiovascular diseases. However, its role and mechanism in myocardial infarction (MI) have not yet been fully understood. H9c2 cells and neonatal rat ventricular myocytes with loss of function of NPY and rats with global knockout were used in this study.

View Article and Find Full Text PDF

Background: Cardiac hypertrophy is an adaptive response of the myocardium to pressure or volume overload. Recent evidences indicate that allicin can prevent cardiac hypertrophy. However, it is not clear whether allicin alleviates cardiac hypertrophy by inhibiting autophagy.

View Article and Find Full Text PDF

Cardiac hypertrophy is a common pathological change frequently accompanied by chronic hypertension and myocardial infarction. Nevertheless, the pathophysiological mechanisms of cardiac hypertrophy have never been elucidated. Recent studies indicated that miR-103 expression was significantly decreased in heart failure patients.

View Article and Find Full Text PDF

Objective: Cardiac microvascular damage is significantly associated with the development of cardiac hypertrophy (CH). Researchers found that allicin could inhibit CH, but the relationship between cardiac microvessel and the inhibition of allicin on CH has not been reported. We aimed to investigate the effect of allicin on the function of cardiac microvascular endothelial cells (CMECs) in CH rat.

View Article and Find Full Text PDF
Article Synopsis
  • * TRPV3, a type of TRP channel, shows increased expression in pathological cardiac hypertrophy but not in exercise-induced hypertrophy, indicating its specific role in heart disease.
  • * Activation of TRPV3 enhances calcium concentration and promotes key proteins (calcineurin, phosphorylated CaMKII, NFATc3), exacerbating hypertrophy, while blocking TRPV3 reduces these protein expressions, suggesting TRPV3 could be a potential target for treatment.
View Article and Find Full Text PDF

A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has been fixed in the paper.

View Article and Find Full Text PDF

Cardiac fibrosis is a common pathologic change along with pressure overload. Recent studies indicated that transient receptor potential (TRP) channels played multiple roles in heart. However, the functional role of transient receptor potential vanilloid-3 (TRPV3) in cardiac fibrosis remained unclear.

View Article and Find Full Text PDF

Cardiac fibrosis is pathological damage associated with nearly all forms of heart disease. AMP-activated protein kinase (AMPK) is an evolutionary conserved energy-sensing enzyme. Emerging evidences indicate that AMPK plays an important role in cardiac fibrosis and cell proliferation.

View Article and Find Full Text PDF

Competing endogenous RNA (ceRNA) have received wide attention because they are a novel way to regulate genes through sharing microRNAs (miRNAs) that are crucial for complex processes in many diseases. However, no systematic analysis of ceRNA mechanism in cardiovascular disease (CVD) is known. To gain insights into the global properties of ceRNAs in multi-CVDs, we constructed the global view of mRNA-related ceRNA cross-talk in eight major CVDs from ~2,800 samples.

View Article and Find Full Text PDF

Carvacrol (CAR) is a compound isolated from some essential oils, many studies have demonstrated its therapeutic potential on different diseases. This study aims to evaluate the protective effect of CAR against myocardial ischemia/reperfusion (I/R) injury in rats. Male adult rats underwent ligation of the left anterior descending coronary artery (LAD) in I/R models.

View Article and Find Full Text PDF

(1) BACKGROUND: Transient receptor potential vanilloid 3 (TRPV3) is a member of the TRP channels family of Ca(2+)-permeant channels. The proteins of some TRP channels are highly expressed in cancer cells. This study aimed to assess the clinical significance and biological functions of TRPV3 in non-small cell lung cancer (NSCLC); (2) METHODS: Immunohistochemistry was used to detect the expression of TRPV3 in NSCLC tissues and adjacent noncancerous lung tissues.

View Article and Find Full Text PDF

Baicalin has a significant neuroprotective effect in stroke. However, the mechanism remains unclear. This study was to reveal the mechanisms by which baicalin protected hippocampal neurons and improved learning and memory impairment after global cerebral ischemia/reperfusion in gerbil.

View Article and Find Full Text PDF

Cardiac hypertrophy (CH) could increase cardiac after-load and lead to heart failure. Recent studies have suggested that long non-coding RNA (lncRNA) played a crucial role in the process of the cardiac hypertrophy, such as Mhrt, TERMINATOR. Some studies have further found a new interacting mechanism, competitive endogenous RNA (ceRNA), of which lncRNA could interact with micro-RNAs (miRNA) and indirectly interact with mRNAs through competing interactions.

View Article and Find Full Text PDF

The abnormal apoptosis of pulmonary artery smooth muscle cells (PASMCs) is an important pathophysiological process in pulmonary vascular remodeling and pulmonary arterial hypertension (PAH). Carvacrol, an essential oil compound from oregano and thyme, has displayed antimicrobial, antitumor, and antioxidant properties. Although carvacrol has pro-apoptosis properties in tumor cells, the underlying mechanisms of carvacrol in PASMC apoptosis remain unclear.

View Article and Find Full Text PDF

Colon cancer is one of the most common malignancies worldwide and has a high mortality rate. Carvacrol is a major component of oregano and thyme essential oils and shows antitumor properties. Here, we investigated the effects of carvacrol on the proliferation and apoptosis of two human colon cancer cell lines, HCT116 and LoVo, and studied the molecular mechanisms of its antitumor properties.

View Article and Find Full Text PDF

Background/aims: Cardiac remodeling is a common pathophysiological change along with chronic hypertension and myocardial infarction. Recent evidence indicated that cardiac tissue expressed peroxisome proliferator-activated receptor γ (PPARγ). However, the functional role of PPARγ in cardiac remodeling remained unclear.

View Article and Find Full Text PDF