This Letter reports the performance of femtosecond (fs) laser-written distributed fiber Bragg gratings (FBGs) under high-temperature conditions up to 1600°C and explores the impact of rapid heat treatment on signal-to-noise ratio (SNR) enhancement. FBGs are essential for reliable optical sensing in extreme temperature environments. Comprehensive tests demonstrate the remarkable performance and resilience of FBGs at temperatures up to 1600°C, confirming their suitability for deployment in such conditions.
View Article and Find Full Text PDFThis Letter reports an innovative technique for fabricating large-scale, highly cascaded first-order sapphire optical fiber Bragg gratings (FBGs) using a femtosecond laser-assisted point-by-point inscription method. For the first time, to the best of our knowledge, this study successfully demonstrates a distributed array of 10 FBGs within highly multimode sapphire crystal fiber, made possible by employing a high-power laser technique to generate larger reflectors with a Gaussian intensity profile. These first-order FBGs offer advantages such as enhanced reflectivity, shorter fabrication time, and simplified spectral characteristics, making them easier to interpret compared with high-order FBGs.
View Article and Find Full Text PDF