Glycoside phosphorylases are enzymes that are frequently used for polysaccharide synthesis. Some of these enzymes have broad substrate specificity, enabling the synthesis of reducing-end-functionalized glucan chains. Here, we explore the potential of glycoside phosphorylases in synthesizing chromophore-conjugated polysaccharides using commercially available chromophoric model compounds as glycosyl acceptors.
View Article and Find Full Text PDFHalogenation can be utilized for the purposes of labeling and molecular imaging, providing a means to, e.g., follow drug distribution in an organism through positron emission tomography (PET) or study the molecular recognition events unfolding by nuclear magnetic resonance (NMR) spectroscopy.
View Article and Find Full Text PDFPolyhydroxyalkanoates (PHAs) provide biodegradable and bio-based alternatives to conventional plastics. Incorporation of 2-hydroxy acid monomers into polymer, in addition to 3-hydroxy acids, offers possibility to tailor the polymer properties. In this study, poly(D-lactic acid) (PDLA) and copolymer P(LA-3HB) were produced and characterized for the first time in the yeast Saccharomyces cerevisiae.
View Article and Find Full Text PDFBoron neutron capture therapy (BNCT) is a noninvasive binary therapeutic modality applicable to the treatment of cancers. While BNCT offers a tumor-targeting selectivity that is difficult to match by other means, the last obstacles preventing the full harness of this potential come in the form of the suboptimal boron delivery strategies presently used in the clinics. To address these challenges, we have developed delivery agents that target the glucose transporter GLUT1.
View Article and Find Full Text PDFIn this work, deoxyribose-5-phosphate aldolase (Ec DERA, EC 4.1.2.
View Article and Find Full Text PDFFucosylated oligosaccharides are interesting molecules due to their bioactive properties. In particular, their application as active ingredient in milk powders is attractive for dairy industries. The objective of this study was to characterize the glycosyl hydrolase family 29 α-fucosidase produced by Aspergillus niger and test its ability to transfucosylate lactose with a view towards potential industrial applications such as the valorization of the lactose side stream produced by dairy industry.
View Article and Find Full Text PDFMethyl jasmonate is capable of initiating or improving the biosynthesis of secondary metabolites in plants and therefore has opened up a concept for the biosynthesis of valuable constituents. In this study, the effect of different doses of methyl jasmonate (MeJA) elicitation on the accumulation of terpenoid indole alkaloids (TIAs) in the hairy root cultures of the medicinal plant, throughout a time course (one-seven days) was investigated. Gas chromatography-mass spectrometry (GC-MS) analyses were carried out for targeted ten major non-polar alkaloids.
View Article and Find Full Text PDFThe oxidative D-xylose pathway, i.e. Dahms pathway, can be utilised to produce from cheap biomass raw material useful chemical intermediates.
View Article and Find Full Text PDFHydrothermal pretreatment is commonly used for enhancing enzymatic hydrolysis of lignocellulosics. Spruce and wheat straw were pretreated with increasing severity and lignin characteristics were analysed. The effect of enzymatically isolated lignin on the hydrolysis of Avicel and the adsorption of a cellobiohydrolase onto lignin was measured.
View Article and Find Full Text PDFLysostaphin from and its family enzymes rapidly acquire prominence as the next generation agents in treatment of infections. The specificity of lysostaphin is promoted by its C-terminal cell wall targeting domain selectivity toward pentaglycine bridges in cell wall. Scission of these cross-links is carried out by its N-terminal catalytic domain, a zinc-dependent endopeptidase.
View Article and Find Full Text PDFAntibody-drug conjugates (ADCs) are emerging as a promising class of selective drug delivery systems in the battle against cancer and other diseases. The auristatins monomethyl auristatin E (MMAE) and monomethyl auristatin F (MMAF) appear as the cytotoxic drug in almost half of the state-of-the-art ADCs on the market or in late stage clinical trials. Here, we present the first complete NMR spectroscopic characterisation of these challenging molecules, and investigate their structural properties by a combined NMR and quantum chemical modelling approach.
View Article and Find Full Text PDFFucosylated oligosaccharides have an important role in maintaining a healthy immune system and homeostatic gut microflora. This study employed a commercial β-galactosidase in the production of fucose-containing galacto-oligosaccharides (fGOS) from lactose and fucose. The production was optimized using experiment design and optimal conditions for a batch production in 3-liter scale.
View Article and Find Full Text PDFUnlabelled: Carbon metabolism of Crabtree-negative yeast Pichia pastoris was profiled using C nuclear magnetic resonance (NMR) to delineate regulation during exponential growth and to study the import of two precursors for branched-chain amino acid biosynthesis, α-ketoisovalerate and α-ketobutyrate. Cells were grown in aerobic batch cultures containing (a) only glucose, (b) glucose along with the precursors, or (c) glucose and Val. The study provided the following new insights.
View Article and Find Full Text PDFBackground: The backbone structure of many hemicelluloses is acetylated, which presents a challenge when the objective is to convert corresponding polysaccharides to fermentable sugars or else recover hemicelluloses for biomaterial applications. Carbohydrate esterases (CE) can be harnessed to overcome these challenges.
Methods: Enzymes from different CE families, AnAcXE (CE1), OsAcXE (CE6), and MtAcE (CE16) were compared based on action and position preference towards acetyl-4-O-methylglucuronoxylan (MGX) and acetyl-galactoglucomannan (GGM).
Oxidation of cereal β-glucans may affect their stability in food products. Generally, polysaccharides oxidise via different pathways leading to chain cleavage or formation of oxidised groups within the polymer chain. In this study, oxidation pathways of oat and barley β-glucans were assessed with different concentrations of hydrogen peroxide (HO) or ascorbic acid (Asc) with ferrous iron (Fe) as a catalyst.
View Article and Find Full Text PDFBackground: Pectin-rich wastes, such as citrus pulp and sugar beet pulp, are produced in considerable amounts by the juice and sugar industry and could be used as raw materials for biorefineries. One possible process in such biorefineries is the hydrolysis of these wastes and the subsequent production of ethanol. However, the ethanol-producing organism of choice, Saccharomyces cerevisiae, is not able to catabolize D-galacturonic acid, which represents a considerable amount of the sugars in the hydrolysate, namely, 18 % (w/w) from citrus pulp and 16 % (w/w) sugar beet pulp.
View Article and Find Full Text PDFThe metabolism of butanol producing bacteria Clostridium acetobutylicum was studied in chemostat with glucose limited conditions, butanol stimulus, and as a reference cultivation. COnstraint-Based Reconstruction and Analysis (COBRA) was applied using additional constraints from (13)C Metabolic Flux Analysis ((13)C-MFA) and experimental measurement results. A model consisting of 451 metabolites and 604 reactions was utilized in flux balance analysis (FBA).
View Article and Find Full Text PDFLong-chain isomaltooligosaccharides (IMOs) are promising prebiotics. IMOs were produced by a Weissella confusa dextransucrase via maltose acceptor reaction. The inputs of substrates (i.
View Article and Find Full Text PDFWe describe here the characterization of a novel enzyme called aldose-aldose oxidoreductase (Cc AAOR; EC 1.1.99) from Caulobacter crescentus.
View Article and Find Full Text PDFDextran-producing Weissella have received significant attention. However, except for maltose, the acceptor reactions of Weissella dextransucrases with different sugars have not been investigated. The action of recombinant Weissella confusa VTT E-90392 dextransucrase was tested with several potential acceptors, particularly, analogs lactose and cellobiose.
View Article and Find Full Text PDFFermentation with lactic acid bacteria (LAB) offers a natural means to modify technological and nutritional properties of foods and food ingredients. This study explored the impact of fermentation with different exopolysaccharide (EPS) producing LAB on rheological, chemical and sensory properties of puréed carrots in water, as a vegetable model, with the focus on texture formation. The screening of 37 LAB strains for starter selection revealed 16 Lactobacillus, Leuconostoc and Weissella strains capable of EPS (dextran, levan, and/or β-glucan) production in the carrot raw material.
View Article and Find Full Text PDFChemical changes of lignin induced by the steam explosion (SE) process were elucidated. Wheat straw was studied as the raw material, and lignins were isolated by the enzymatic mild acidolysis lignin (EMAL) procedure before and after the SE treatment for analyses mainly by two-dimensional (2D) [heteronuclear single-quantum coherence (HSQC) and heteronuclear multiple-bond correlation (HMBC)] and (31)P nuclear magnetic resonance (NMR). The β-O-4 structures were found to be homolytically cleaved, followed by recoupling to β-5 linkages.
View Article and Find Full Text PDFFour potential dehydrogenases identified through literature and bioinformatic searches were tested for L-arabonate production from L-arabinose in the yeast Saccharomyces cerevisiae. The most efficient enzyme, annotated as a D-galactose 1-dehydrogenase from the pea root nodule bacterium Rhizobium leguminosarum bv. trifolii, was purified from S.
View Article and Find Full Text PDFNMR spectroscopy is an efficient method for analyzing (13)C labelling of cellular metabolites. The strength of it is especially the ability to provide direct quantitative positional information on the (13)C labelling status of carbon atoms in metabolites. NMR spectroscopic methods allow also for detection of contiguously (13)C-labelled fragments in the carbon backbones of the metabolites.
View Article and Find Full Text PDFD-xylonate is a potential platform chemical which can be produced by engineered Saccharomyces cerevisiae strains. In order to address production constraints in more detail, we analysed the role of lactone ring opening in single cells and populations. Both D-xylono-γ-lactone and D-xylonate were produced when the Caulobacter crescentus xylB (D-xylose dehydrogenase) was expressed in S.
View Article and Find Full Text PDF