Inoculation of common bean seed with diversified bacterial synthetic communities can induce deep modifications of both seed and seedling microbiota, even in living potting soil.
View Article and Find Full Text PDFA decline in the carbon content of agricultural soils has been reported globally. Amendments of forest industry side-streams might counteract this. We tested the effects of industrial conifer bark and its cascade process materials on the soil microbiome under barley (Hordeum vulgare L.
View Article and Find Full Text PDFClimate change may affect the carbon sink function of peatlands through warming and drying. Fine-root biomass production (FRBP) of sedge fens, a widespread peatland habitat, is important in this context, since most of the biomass is below ground in these ecosystems. We examined the response of fine-root biomass production, depth distribution (10 cm intervals down to 60 cm), chemical characteristics, and decomposition along with other main litter types (sedge leaves, Sphagnum moss shoots) to an average May-to-October warming of 1.
View Article and Find Full Text PDFA substantial amount of below-ground carbon (C) is suggested to be associated with fungi, which may significantly affect the soil C balance in forested ecosystems. Ergosterol from in-growth mesh bags and litterbags was used to estimate fungal biomass production and community composition in drained peatland forests with differing fertility. Extramatrical mycelia (EMM) biomass production was generally higher in the nutrient-poor site, increased with deeper water table level and decreased along the length of the recovery time.
View Article and Find Full Text PDFDeclining carbon (C) content in agricultural soils threatens soil fertility and makes soil prone to erosion, which could be rectified with organic soil amendments. In a 4-yr field trial, we made a single application of three different organic sludges from the pulp and paper industry and studied their effects on cereal yield, soil C content, and fungal and bacterial composition. In laboratory rainfall simulations, we also studied the effects of the soil amendments on susceptibility to erosion and nutrient mobilization of a clay-textured soil by measuring the quality of percolation water passing through 40-cm intact soil monoliths during 2-d rainfall simulations over four consecutive years after application.
View Article and Find Full Text PDFShort-term agronomic and environmental benefits are fundamental factors in encouraging farmers to use biochar on a broad scale. The short-term impacts of forest residue biochar (BC) on the productivity and carbon (C) storage of arable boreal clay soil were studied in a field experiment. In addition, rain simulations and aggregate stability tests were carried out to investigate the potential of BC to reduce nutrient export to surface waters.
View Article and Find Full Text PDFBoreal forests are ecosystems with low nitrogen (N) availability that store globally significant amounts of carbon (C), mainly in plant biomass and soil organic matter (SOM). Although crucial for future climate change predictions, the mechanisms controlling boreal C and N pools are not well understood. Here, using a three-year field experiment, we compare SOM decomposition and stabilization in the presence of roots, with exclusion of roots but presence of fungal hyphae and with exclusion of both roots and fungal hyphae.
View Article and Find Full Text PDFNorthern peatlands form a major soil carbon (C) stock. With climate change, peatland C mineralization is expected to increase, which in turn would accelerate climate change. A particularity of peatlands is the importance of soil aeration, which regulates peatland functioning and likely modulates the responses to warming climate.
View Article and Find Full Text PDFGlobally 40-70 Pg of carbon (C) are stored in coarse woody debris on the forest floor. Climate change may reduce the function of this stock as a C sink in the future due to increasing temperature. However, current knowledge on the drivers of wood decomposition is inadequate for detailed predictions.
View Article and Find Full Text PDFBackground: Nitrite and hexamine are used as silage additives because of their adverse effects on Clostridia and Clostridia spores. The effect of sodium nitrite and sodium nitrite/hexamine mixtures on silage quality was investigated. A white lupin-wheat mixture was treated with sodium nitrite (NaHe0) (900 g t forage), or mixtures of sodium nitrite (900 g t ) and hexamine.
View Article and Find Full Text PDFRoot-colonizing fungi can form mycorrhizal or endophytic associations with plant roots, the type of association depending on the host. We investigated the differences and similarities of the fungal communities of three boreal ericoid plants and one coniferous tree, and identified the community structure of fungi utilizing photosynthates from the plants studied. The fungal communities of roots and soils of Vaccinium myrtillus, Vaccinium vitis-idaea, Calluna vulgaris and Pinus sylvestris were studied in an 18-month-long experiment where the plants were grown individually in natural substrate.
View Article and Find Full Text PDFOmbrotrophic peatlands are a recognized global carbon reservoir. Without restoration and peat regrowth, harvested peatlands are dramatically altered, impairing their carbon sink function, with consequences for methane turnover. Previous studies determined the impact of commercial mining on the physicochemical properties of peat and the effects on methane turnover.
View Article and Find Full Text PDFClimate change affects peatlands directly through increased air temperatures and indirectly through changes in water-table level (WL). The interactions of these two still remain poorly known. We determined experimentally the separate and interactive effects of temperature and WL regime on factors of relevance for the inputs to the carbon cycle: plant community composition, phenology, biomass production, and shoot:root allocation in two wet boreal sedge-dominated fens, "southern" at 62°N and "northern" at 68°Ν.
View Article and Find Full Text PDFUnlabelled: Northern peatlands in general have high methane (CH) emissions, but individual peatlands show considerable variation as CH sources. Particularly in nutrient-poor peatlands, CH production can be low and exceeded by carbon dioxide (CO) production from unresolved anaerobic processes. To clarify the role anaerobic bacterial degraders play in this variation, we compared consumers of cellobiose-derived carbon in two fens differing in nutrient status and the ratio of CO to CH produced.
View Article and Find Full Text PDFThe use of the ligninolytic fungi Trametes versicolor for the degradation of micropollutants has been widely studied. However, few studies have addressed the treatment of real wastewater containing pharmaceutically active compounds (PhAC) under non-sterile conditions. The main drawback of performing such treatments is the difficulty for the inoculated fungus to successfully compete with the other microorganisms growing in the bioreactor.
View Article and Find Full Text PDFForest harvesting, especially when intensified harvesting method as whole-tree harvesting with stump lifting (WTHs) are used, may increase mercury (Hg) and methylmercury (MeHg) leaching to recipient water courses. The effect can be enhanced if the underlying bedrock and overburden soil contain Hg. The impact of stem-only harvesting (SOH) and WTHs on the concentrations of Hg and MeHg as well as several other variables in the ditch water was studied using a paired catchment approach in eight drained peatland-dominated catchments in Finland (2008-2012).
View Article and Find Full Text PDFSource point treatment of effluents with a high load of pharmaceutical active compounds (PhACs), such as hospital wastewater, is a matter of discussion among the scientific community. Fungal treatments have been reported to be successful in degrading this type of pollutants and, therefore, the white-rot fungus Trametes versicolor was applied for the removal of PhACs from veterinary hospital wastewater. Sixty-six percent removal was achieved in a non-sterile batch bioreactor inoculated with T.
View Article and Find Full Text PDFVegetation and water table are important regulators of methane emission in peatlands. Microform variation encompasses these factors in small-scale topographic gradients of dry hummocks, intermediate lawns and wet hollows. We examined methane production and oxidization among microforms in four boreal bogs that showed more variation of vegetation within a bog with microform than between the bogs.
View Article and Find Full Text PDFImpacts of warming with open-top chambers on microbial communities in wet conditions and in conditions resulting from moderate water-level drawdown (WLD) were studied across 0-50 cm depth in northern and southern boreal sedge fens. Warming alone decreased microbial biomass especially in the northern fen. Impact of warming on microbial PLFA and fungal ITS composition was more obvious in the northern fen and linked to moisture regime and sample depth.
View Article and Find Full Text PDFThe anaerobic ammonium oxidation (anammox) process is widely used for N-rich wastewater treatment. In the current research the deammonification reactor in a reverse order (first anammox, then the nitrifying biofilm cultivation) was started up with a high maximum N removal rate (1.4 g N m(-2) d(-1)) in a moving bed biofilm reactor.
View Article and Find Full Text PDFRobust start-up of the anaerobic ammonium oxidation (anammox) process from non-anammox-specific seeding material was achieved by using an inoculation with sludge-treating industrial [Formula: see text]-, organics- and N-rich yeast factory wastewater. N-rich reject water was treated at 20°C, which is significantly lower than optimum treatment temperature. Increasing the frequency of biomass fluidization (from 1-2 times per day to 4-5 times per day) through feeding the reactor with higher flow rate resulted in an improved total nitrogen removal rate (from 100 to 500 g m(-3)d(-1)) and increased anammox bacteria activity.
View Article and Find Full Text PDFThe increased demand for harvesting energy wood raises questions about its effects on the functioning of the forest ecosystems, soil processes and biodiversity. Impacts of tree stump removal on ectomycorrhizal fungal (EMF) communities of Norway spruce saplings were studied with 454-pyrosequencing in a 3-year field experiment replicated in 3 geographical areas. This is possibly the most thorough investigation of EMF communities associated with saplings grown on sites subjected to energy wood harvesting.
View Article and Find Full Text PDFSphagnum-associated methanotrophs (SAM) are an important sink for the methane (CH4) formed in boreal peatlands. We aimed to reveal how peatland succession, which entails a directional change in several environmental variables, affects SAM and their activity. Based on the pmoA microarray results, SAM community structure changes when a peatland develops from a minerotrophic fen to an ombrotrophic bog.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2014
Nitrogen (N) accumulation rates in peatland ecosystems indicate significant biological atmospheric N2 fixation associated with Sphagnum mosses. Here, we show that the linkage between methanotrophic carbon cycling and N2 fixation may constitute an important mechanism in the rapid accumulation of N during the primary succession of peatlands. In our experimental stable isotope enrichment study, previously overlooked methane-induced N2 fixation explained more than one-third of the new N input in the younger peatland stages, where the highest N2 fixation rates and highest methane oxidation activities co-occurred in the water-submerged moss vegetation.
View Article and Find Full Text PDF