Purpose: Bipolar radio-frequency-induced thermofusion (BiRTh) of intestinal tissue might replace conventional stapling devices which are associated with technical and functional complications. Previous results of our study group confirmed the feasibility to fuse intestinal tissue using BiRTh-induced thermofusion ex vivo. The aim of this study was now to evaluate the efficacy of fusing intestinal tissue in vivo by BiRTh-induced thermofusion.
View Article and Find Full Text PDFPurpose: In recent years, vessel sealing has become a well-established method in surgical practice for sealing and transecting vessels. Since this technology depends on the fusion of collagen fibers abundantly present in the intestinal wall, it should also be possible to create intestinal anastomoses by thermofusion. Bipolar radiofrequency-induced thermofusion of intestinal tissue may replace traditionally used staples or sutures in the future.
View Article and Find Full Text PDFPurpose: Vessel sealing has been well-established in surgical practice in recent years. Bipolar radiofrequency-induced thermofusion (BIRTH) of intestinal tissue might replace traditionally used staples or sutures in the near future. In this experimental study, the influence of compressive pressure, fusion temperature, and duration of heating on the quality of intestinal anastomosis was investigated to obtain the relevant major parameters for the in vivo use of this system.
View Article and Find Full Text PDF