Beilstein J Org Chem
February 2013
Azobenzenes are robust, reliable, and easy to synthesize photochromic switches. However, their high conformational flexibility is a disadvantage in machine-like applications. The almost free rotation of the phenyl groups can be restricted by bridging two ortho positions with a CH(2)CH(2) group, as realized in the dihydrodibenzo diazocine framework.
View Article and Find Full Text PDFThe bistability of spin states (e.g., spin crossover) in bulk materials is well investigated and understood.
View Article and Find Full Text PDFFor the condensation of anions such as phosphate and ADP to form ATP and water, nature employs sophisticated supramolecular systems to overcome coulomb repulsion and activation barriers. For an attempt to create a simple, analogous chemical system, the dimerization of vanadate is probably the simplest model. We have investigated Zn-benzylcyclene which favors the dimerization thermodynamically as shown by NMR titration.
View Article and Find Full Text PDFMagnetic bistability in spin-crossover materials generally is a collective phenomenon that arises from the cooperative interaction of a large number of microscopic magnetic moments within the crystal lattice in the solid state. We now report on individual molecules in homogeneous solution that are switched between the diamagnetic and paramagnetic states at room temperature by light-driven coordination-induced spin-state switching (LD-CISSS). Switching of the coordination number (and concurrently of the spin state) was achieved by using Ni-porphyrin as a square-planar platform and azopyridines as photodissociable axial ligands.
View Article and Find Full Text PDF