Shifting the food system to a more sustainable one requires changes on both sides of the supply chain, with the consumer playing a key role. Therefore, understanding the factors that positively correlate with increased organic food sales over time for an entire population can help guide policymakers, industry, and research to increase this transition further. Using a statistical approach, we developed a spatial pooled cross-sectional model to analyze factors that positively correlate with an increased demand for organic food sales over 20 years (1999-2019) for an entire region (the city-state of Hamburg, Germany), accounting for spatial effects through the spatial error model, spatially lagged X model, and spatial Durbin error model.
View Article and Find Full Text PDFInt J Environ Res Public Health
January 2020
Computational traceback methodologies are important tools for investigations of widespread foodborne disease outbreaks as they assist investigators to determine the causative outbreak location and food item. In modeling the entire food supply chain from farm to fork, however, these methodologies have paid little attention to consumer behavior and mobility, instead making the simplifying assumption that consumers shop in the area adjacent to their home location. This paper aims to fill this gap by introducing a gravity-based approach to model food-flows from supermarkets to consumers and demonstrating how models of consumer shopping behavior can be used to improve computational methodologies to infer the source of an outbreak of foodborne disease.
View Article and Find Full Text PDFIn today's globally interconnected food system, outbreaks of foodborne disease can spread widely and cause considerable impact on public health. We study the problem of identifying the source of emerging large-scale outbreaks of foodborne disease; a crucial step in mitigating their proliferation. To solve the source identification problem, we formulate a probabilistic model of the contamination diffusion process as a random walk on a network and derive the maximum-likelihood estimator for the source location.
View Article and Find Full Text PDF