Publications by authors named "Hanno Fischer"

Background: How oscillatory brain rhythms alone, or in combination, influence cortical information processing to support learning has yet to be fully established. Local field potential and multi-unit neuronal activity recordings were made from 64-electrode arrays in the inferotemporal cortex of conscious sheep during and after visual discrimination learning of face or object pairs. A neural network model has been developed to simulate and aid functional interpretation of learning-evoked changes.

View Article and Find Full Text PDF

Visual cues from faces provide important social information relating to individual identity, sexual attraction and emotional state. Behavioural and neurophysiological studies on both monkeys and sheep have shown that specialized skills and neural systems for processing these complex cues to guide behaviour have evolved in a number of mammals and are not present exclusively in humans. Indeed, there are remarkable similarities in the ways that faces are processed by the brain in humans and other mammalian species.

View Article and Find Full Text PDF

Locomotor networks must possess the inherent flexibility to adapt their output. In this review we discuss evidence from a simple vertebrate locomotor network that suggests fast inhibitory synapses are important targets for the forms of neuromodulation that afford this flexibility. Two important inhibitory transmitters, glycine and GABA, are present in the CNS of Xenopus tadpoles, where they each play distinct roles in the control of swimming.

View Article and Find Full Text PDF

The tegula is a complex, knob-shaped sense organ associated with the base of the locust wing. Despite a detailed knowledge of its role in flight motor control, little is known about the relationship between the stroke parameters of the wing, movement of the tegula organ and the pattern of tegula activity. In this study, therefore, the kinematic parameters of the fore- and hindwings were investigated with respect to the tegula activity pattern during tethered flight.

View Article and Find Full Text PDF

This study focuses upon the network pathways underlying the adrenoreceptor-mediated modulation of fictive swimming in the immobilized Xenopus laevis tadpole. As shown recently, noradrenaline (NA) increases cycle periods while simultaneously reducing the rostrocaudal delay in head-to-tail firing and the duration of swimming episodes. Furthermore, both swimming frequency and duration are reduced by selective pharmacological activation of alpha1- and/or alpha2-adrenoreceptors, while alpha1-receptor activation also reduces rostrocaudal delays.

View Article and Find Full Text PDF