Publications by authors named "Hannich J"

Targeted protein degradation (TPD) relies on small molecules to recruit proteins to E3 ligases to induce their ubiquitylation and degradation by the proteasome. Only a few of the approximately 600 human E3 ligases are currently amenable to this strategy. This limits the actionable target space and clinical opportunities and thus establishes the necessity to expand to additional ligases.

View Article and Find Full Text PDF

Metabolic alterations in cancer precipitate in associated dependencies that can be therapeutically exploited. To meet this goal, natural product-inspired small molecules can provide a resource of invaluable chemotypes. Here, we identify orpinolide, a synthetic withanolide analog with pronounced antileukemic properties, via orthogonal chemical screening.

View Article and Find Full Text PDF

Chemical modulation of proteins enables a mechanistic understanding of biology and represents the foundation of most therapeutics. However, despite decades of research, 80% of the human proteome lacks functional ligands. Chemical proteomics has advanced fragment-based ligand discovery toward cellular systems, but throughput limitations have stymied the scalable identification of fragment-protein interactions.

View Article and Find Full Text PDF

Molecular glue degraders (MGDs) are small molecules that degrade proteins of interest via the ubiquitin-proteasome system. While MGDs were historically discovered serendipitously, approaches for MGD discovery now include cell-viability-based drug screens or data mining of public transcriptomics and drug response datasets. These approaches, however, have target spaces restricted to the essential proteins.

View Article and Find Full Text PDF

SMNDC1 is a Tudor domain protein that recognizes di-methylated arginines and controls gene expression as an essential splicing factor. Here, we study the specific contributions of the SMNDC1 Tudor domain to protein-protein interactions, subcellular localization, and molecular function. To perturb the protein function in cells, we develop small molecule inhibitors targeting the dimethylarginine binding pocket of the SMNDC1 Tudor domain.

View Article and Find Full Text PDF
Article Synopsis
  • Despite their potential as therapeutic targets, solute carrier (SLC) transporters are often underutilized due to challenges in reliable chemical screening.
  • The researchers developed a new screening method called PARADISO, using isogenic cell lines that rely on different SLC genes to identify inhibitors specifically for SLC16A3.
  • They successfully discovered and characterized a selective SLC16A3 inhibitor, slCeMM1, which also demonstrated broad selectivity across the proteome, contributing to better drug discovery techniques.
View Article and Find Full Text PDF

Background: Increasing evidence links genetic defects affecting actin-regulatory proteins to diseases with severe autoimmunity and autoinflammation, yet the underlying molecular mechanisms are poorly understood. Dedicator of cytokinesis 11 (DOCK11) activates the small Rho guanosine triphosphatase (GTPase) cell division cycle 42 (CDC42), a central regulator of actin cytoskeleton dynamics. The role of DOCK11 in human immune-cell function and disease remains unknown.

View Article and Find Full Text PDF

The nuclear factor of activated T cells (NFAT) family of transcription factors plays central roles in adaptive immunity in murine models; however, their contribution to human immune homeostasis remains poorly defined. In a multigenerational pedigree, we identified 3 patients who carry germ line biallelic missense variants in NFATC1, presenting with recurrent infections, hypogammaglobulinemia, and decreased antibody responses. The compound heterozygous NFATC1 variants identified in these patients caused decreased stability and reduced the binding of DNA and interacting proteins.

View Article and Find Full Text PDF

Recombinant human leptin (metreleptin) reduces hepatic lipid content in patients with lipodystrophy and overweight patients with non-alcoholic fatty liver disease and relative hypoleptinemia independent of its anorexic action. In rodents, leptin signaling in the brain increases very-low-density lipoprotein triglyceride (VLDL-TG) secretion and reduces hepatic lipid content via the vagus nerve. In this randomized, placebo-controlled crossover trial (EudraCT Nr.

View Article and Find Full Text PDF

Toxoplasma gondii possesses sphingolipid synthesis capabilities and is equipped to salvage lipids from its host. The contribution of these two routes of lipid acquisition during parasite development is unclear. As part of a complete ceramide synthesis pathway, T.

View Article and Find Full Text PDF

Antiapoptotic Bcl-2 family members have recently (re)emerged as key drug targets in cancer, with a tissue- and tumor-specific activity profile of available BH3 mimetics. In multiple myeloma, MCL-1 has been described as a major gatekeeper of apoptosis. This discovery has led to the rapid establishment of clinical trials evaluating the impact of various MCL-1 inhibitors.

View Article and Find Full Text PDF

Hedgehog (Hh) signaling is essential during development and in organ physiology. In the canonical pathway, Hh binding to Patched (PTCH) relieves the inhibition of Smoothened (SMO). Yet, PTCH may also perform SMO-independent functions.

View Article and Find Full Text PDF

The HIV-protease inhibitor nelfinavir has shown broad anticancer activity in various preclinical and clinical contexts. In patients with advanced, proteasome inhibitor (PI)-refractory multiple myeloma, nelfinavir-based therapy resulted in 65% partial response or better, suggesting that this may be a highly active chemotherapeutic option in this setting. The broad anticancer mechanism of action of nelfinavir implies that it interferes with fundamental aspects of cancer cell biology.

View Article and Find Full Text PDF

Aim: The worldwide increase in obesity and type 2 diabetes (T2D) represents a major health challenge. Chronically altered lipids induced by obesity further promote the development of T2D, and the accumulation of toxic lipid metabolites in serum and peripheral organs may contribute to the diabetic phenotype.

Methods: To better understand the complex metabolic pattern of lean and obese T2D and non-T2D individuals, we analysed the lipid profile of human serum, skeletal muscle and visceral adipose tissue of two cohorts by systematic mass spectrometry-based lipid analysis.

View Article and Find Full Text PDF

Ischaemic heart disease and stroke are the most common causes of death worldwide. Anoxia, defined as the lack of oxygen, is commonly seen in both these pathologies and triggers profound metabolic and cellular changes. Sphingolipids have been implicated in anoxia injury, but the pathomechanism is unknown.

View Article and Find Full Text PDF

Oriented cell division is a fundamental mechanism to control asymmetric stem cell division, neural tube elongation and body axis extension, among other processes. During zebrafish gastrulation, when the body axis extends, dorsal epiblast cells display divisions that are robustly oriented along the animal-vegetal embryonic axis. Here, we use a combination of lipidomics, metabolic tracer analysis and quantitative image analysis to show that sphingolipids mediate spindle positioning during oriented division of epiblast cells.

View Article and Find Full Text PDF

In this study, we identify the natural product gambogic acid as well as structurally related synthetic xanthones as first-in-class covalent inhibitors of the de novo sphingolipid biosynthesis. We apply chemoproteomics to determine that gambogic acid binds to the regulatory small subunit B of the serine palmitoyltransferase complex (SPTSSB). We then test structurally related synthetic xanthones to identify 18 as an equally potent but more selective binder of SPTSSB and show that 18 reduces sphingolipid levels in situ and in vivo.

View Article and Find Full Text PDF
Article Synopsis
  • Elevated arginase 1 activity leads to a depletion of extracellular arginine, which negatively impacts T cell function and serves as an immunosuppressive mechanism in tumors.
  • The mitochondrial arginase isoform Arg2, expressed in T cells, plays a critical role in regulating CD8+ T cell activity and enhancing their tumor-fighting abilities.
  • Deleting Arg2 in CD8+ T cells enhances their activation and effectiveness against tumors, especially when combined with PD-1 blockade, suggesting that targeting Arg2 could be a promising strategy for improving cancer immunotherapy.
View Article and Find Full Text PDF

Hereditary sensory and autonomic neuropathy (HSAN) types IA and IC (IA/C) are caused by elevated levels of an atypical class of lipid named 1-deoxysphingolipid (DoxSL). How elevated levels of DoxSL perturb the physiology of the cell and how the perturbations lead to HSAN IA/C are largely unknown. In this study, we show that C-1-deoxydihydroceramide (C-DoxDHCer) is highly toxic to the cell, while C- and C-DoxDHCer are less toxic.

View Article and Find Full Text PDF

Lipids are essential components of eukaryotic cell membranes and play crucial roles in cellular signaling and metabolism. While increasing evidence shows that the activities of lipids are dependent upon subcellular localization, tools to study local lipid metabolism and signaling are limited. Herein, we report an approach that enabled us to selectively deliver photo-caged lipids into lysosomes and thereafter to quickly release the lipid molecules by illumination.

View Article and Find Full Text PDF

Sphingolipids are bio-active metabolites that show structural diversity among eukaryotes. They are essential for growth of all eukaryotic cells but when produced in an uncontrolled manner can lead to cell death and pathologies including auto-immune reactions, cancer, diabetes and neurodegeneration. is an important genetic model organism both to find new drug-targets against parasitic nematodes and to study the conserved roles of sphingolipids in animals like their essential functions in very basic cellular processes ranging from maintenance of cell polarity and mitochondrial repair to growth and survival.

View Article and Find Full Text PDF

Sterols and sphingolipids are considered mainly eukaryotic lipids even though both are present in some prokaryotes, with sphingolipids being more widespread than sterols. Both sterols and sphingolipids differ in their structural features in vertebrates, plants, and fungi. Interestingly, some invertebrates cannot synthesize sterols de novo and seem to have a reduced dependence on sterols.

View Article and Find Full Text PDF

In response to pheromone(s), Caenorhabditis elegans interrupts its reproductive life cycle and enters diapause as a stress-resistant dauer larva. This decision is governed by a complex system of neuronal and hormonal regulation. All the signals converge onto the nuclear hormone receptor DAF-12.

View Article and Find Full Text PDF

Direct profiling of total lipid extracts on a hybrid LTQ Orbitrap mass spectrometer by high-resolution survey spectra clusters species of 11 major lipid classes into 7 groups, which are distinguished by their sum compositions and could be identified by accurately determined masses. Rapid acquisition of survey spectra was employed as a "top-down" screening tool that, together with the computational method of principal component analysis, revealed pronounced perturbations in the abundance of lipid precursors within the entire series of experiments. Altered lipid precursors were subsequently identified either by accurately determined masses or by in-depth MS/MS characterization that was performed on the same instrument.

View Article and Find Full Text PDF

Data-dependent acquisition of MS/MS spectra from lipid precursors enables to emulate the simultaneous acquisition of an unlimited number of precursor and neutral loss scans in a single analysis. This approach takes full advantage of rich fragment patterns in tandem mass spectra of lipids and enables their profiling by complex (Boolean) scans, in which masses of several fragment ions are considered within a single logical framework. No separation of lipids is required, and the accuracy of identification and quantification is not compromised, compared to conventional precursor and neutral loss scanning.

View Article and Find Full Text PDF