Publications by authors named "Hannetz Roschzttardtz"

Global climate change has already brought noticeable alterations to multiple regions of our planet, including increased CO2 concentrations and changes in temperature. Several important steps of plant growth and development, such as embryogenesis, can be affected by such environmental changes; for instance, they affect how stored nutrients are used during early stages of seed germination during the transition from heterotrophic to autotrophic metabolism-a critical period for the seedling's survival. In this article, we briefly describe relevant processes that occur during embryo maturation and account for nutrient accumulation, which are sensitive to environmental change.

View Article and Find Full Text PDF

Iron is an essential micronutrient for life. During the development of the seed, iron accumulates during embryo maturation. In Arabidopsis thaliana, iron mainly accumulates in the vacuoles of only one cell type, the cell layer that surrounds provasculature in hypocotyl and cotyledons.

View Article and Find Full Text PDF

Iron is accumulated in Arabidopsis embryos during seed maturation. Where iron localizes in seed and embryo is important information for seed research. Iron detection can be performed in an inexpensive manner using Perls staining, based on the Prussian blue complex formation.

View Article and Find Full Text PDF

Iron is the most abundant micronutrient in plant mitochondria, and it has a crucial role in biochemical reactions involving electron transfer. It has been described in that () is an essential gene and that knockdown mutant rice plants have a decreased amount of iron in their mitochondria, strongly suggesting that OsMIT is involved in mitochondrial iron uptake. In , two genes encode MIT homologues.

View Article and Find Full Text PDF

Iron is an essential micronutrient for humans and other organisms. Its deficiency is one of the leading causes of anemia worldwide. The world health organization has proposed that an alternative to increasing iron content in food is through crop biofortification.

View Article and Find Full Text PDF

We performed a histological and quantitative study of iron in archaeological maize seeds from prehispanic times recovered from Tarapacá, Atacama Desert. Also, we examined iron distribution changes at the cell level in embryos from ancient versus new varieties of maize. Our results show a progressive decrease in iron concentration from the oldest maize to modern specimens.

View Article and Find Full Text PDF

Thermal performance curves have provided a common framework to study the impact of temperature in biological systems. However, few generalities have emerged to date. Here, we combine an experimental approach with theoretical analyses to demonstrate that performance curves are expected to vary predictably with the levels of biological organization.

View Article and Find Full Text PDF

Several transcription factors have been involved in the regulation of gene expression during seed development. Nutritional reserves, including iron, are principally accumulated during seed maturation stages. Using the model plant , it has been shown that iron is stored during seed development in vacuoles of the endodermis cell layer.

View Article and Find Full Text PDF

There is a link between PAP/SAL retrograde pathway, ethylene signaling and Fe metabolism in Arabidopsis. Nuclear gene expression is regulated by a diversity of retrograde signals that travel from organelles to the nucleus in a lineal or classical model. One such signal molecule is 3'-phosphoadenisine-5'-phosphate (PAP) and it's in vivo levels are regulated by SAL1/FRY1, a phosphatase enzyme located in chloroplast and mitochondria.

View Article and Find Full Text PDF

Iron (Fe) is an essential micronutrient for plant growth and development. Any defects in the maintenance of Fe homeostasis will alter plant productivity and the quality of their derived products. In Arabidopsis (), the transcription factor ILR3 plays a central role in controlling Fe homeostasis.

View Article and Find Full Text PDF

Iron (Fe) homeostasis is crucial for all living organisms. In mammals, an integrated posttranscriptional mechanism couples the regulation of both Fe deficiency and Fe excess responses. Whether in plants an integrated control mechanism involving common players regulates responses both to deficiency and to excess is still to be determined.

View Article and Find Full Text PDF

Seeds accumulate iron during embryo maturation stages of embryogenesis. Using as model plant, it has been described that mature embryos accumulate iron within a specific cell layer, the endodermis. This distribution pattern was conserved in most of the analyzed members from Brassicales, with the exception of the basal that also showed elevated amounts of iron in cortex cells.

View Article and Find Full Text PDF

Iron is an essential micronutrient for plants. Little is know about how iron is loaded in embryo during seed development. In this article we used Perls/DAB staining in order to reveal iron localization at the cellular and subcellular levels in different Brassicaceae seed species.

View Article and Find Full Text PDF

Anemia due to iron deficiency is a worldwide issue, affecting mainly children and women. Seed iron is a major source of this micronutrient for feeding, however, in most crops these levels are too low to meet daily needs. Thus, increasing iron allocation and its storage in seeds can represent an important step to enhance iron provision for humans and animals.

View Article and Find Full Text PDF

Endosomal Sorting Complex Required for Transport (ESCRT)-III proteins mediate membrane remodeling and the release of endosomal intraluminal vesicles into multivesicular bodies. Here, we show that the ESCRT-III subunit paralogs CHARGED MULTIVESICULAR BODY PROTEIN1 (CHMP1A) and CHMP1B are required for autophagic degradation of plastid proteins in Arabidopsis thaliana. Similar to autophagy mutants, chmp1a chmp1b (chmp1) plants hyperaccumulated plastid components, including proteins involved in plastid division.

View Article and Find Full Text PDF

The molecular mechanisms by which vascular tissues acquire their identities are largely unknown. Here, we report on the identification and characterization of VASCULATURE COMPLEXITY AND CONNECTIVITY (VCC), a member of a 15-member, plant-specific gene family in Arabidopsis (Arabidopsis thaliana) that encodes proteins of unknown function with four predicted transmembrane domains. Homozygous vcc mutants displayed cotyledon vein networks of reduced complexity and disconnected veins.

View Article and Find Full Text PDF

ESCRT proteins mediate membrane remodeling and scission events and are essential for endosomal sorting of plasma membrane proteins for degradation. We have identified a novel, plant-specific ESCRT component called PROS (POSITIVE REGULATOR OF SKD1) in Arabidopsis thaliana. PROS has a strong positive effect on the in vitro ATPase activity of SKD1 (also known as Vacuolar Protein Sorting 4 or VPS4), a critical component required for ESCRT-III disassembly and endosomal vesiculation.

View Article and Find Full Text PDF

Deciphering cellular iron (Fe) homeostasis requires having access to both quantitative and qualitative information on the subcellular pools of Fe in tissues and their dynamics within the cells. We have taken advantage of the Perls/DAB Fe staining procedure to perform a systematic analysis of Fe distribution in roots, leaves and reproductive organs of the model plant Arabidopsis thaliana, using wild-type and mutant genotypes affected in iron transport and storage. Roots of soil-grown plants accumulate iron in the apoplast of the central cylinder, a pattern that is strongly intensified when the citrate effluxer FRD3 is not functional, thus stressing the importance of citrate in the apoplastic movement of Fe.

View Article and Find Full Text PDF

In most plant cell types, the chloroplast represents the largest sink for iron, which is both essential for chloroplast metabolism and prone to cause oxidative damage. Here, we show that to buffer the potentially harmful effects of iron, besides ferritins for storage, the chloroplast is equipped with specific iron transporters that respond to iron toxicity by removing iron from the chloroplast. We describe two transporters of the YELLOW STRIPE1-LIKE family from Arabidopsis thaliana, YSL4 and YSL6, which are likely to fulfill this function.

View Article and Find Full Text PDF

We present data supporting a general role for FERRIC REDICTASE DEFECTIVE3 (FRD3), an efflux transporter of the efficient iron chelator citrate, in maintaining iron homeostasis throughout plant development. In addition to its well-known expression in root, we show that FRD3 is strongly expressed in Arabidopsis thaliana seed and flower. Consistently, frd3 loss-of-function mutants are defective in early germination and are almost completely sterile, both defects being rescued by iron and/or citrate supply.

View Article and Find Full Text PDF

Many central metabolic processes require iron as a cofactor and take place in specific subcellular compartments such as the mitochondrion or the chloroplast. Proper iron allocation in the different organelles is thus critical to maintain cell function and integrity. To study the dynamics of iron distribution in plant cells, we have sought to identify the different intracellular iron pools by combining three complementary imaging approaches, histochemistry, micro particle-induced x-ray emission, and synchrotron radiation micro X-ray fluorescence.

View Article and Find Full Text PDF

Iron (Fe) is an essential metal ion, required for basic cellular processes such as respiration, photosynthesis and cell division. Therefore, Fe has to be stored and distributed to several organelles to fulfill its roles. The molecular basis of Fe distribution is poorly understood.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessiona8is92o0q54htg6d49e8dibtbe5g0i32): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once