ACS Appl Mater Interfaces
November 2024
Recent advances in synthesis techniques yield InP-based QDs with optical properties comparable to those of benchmark Cd-based QDs, making InP-based QDs viable alternatives to toxic Cd-based QDs for applications such as quantum dot LEDs (QLEDs). However, QLEDs typically suffer from a loss of luminescence over time due to exposure of the QDs to ambient air. To avoid this, state-of-the-art hybrid barrier layers are explored consisting of alternating organic/inorganic layers.
View Article and Find Full Text PDFQuantum dots (QDs) are inorganic semiconductor nanocrystals capable of emitting light. The current major challenge lies in the use of heavy metals, which are known to be highly toxic to humans and pose significant environmental risks. Researchers have turned to indium (In) as a promising option for more environmentally benign QDs, specifically indium phosphide (InP).
View Article and Find Full Text PDFInP-based colloidal nanocrystals are being developed as an alternative to cadmium-based materials. However, their optical properties have not been widely studied. In this paper, the fundamental magneto-optical properties of InP/ZnSe/ZnS nanocrystals are investigated at cryogenic temperatures.
View Article and Find Full Text PDFSolid-state light-emitting diodes (LEDs) emit nearly monochromatic light, yet seamless tuning of emission color throughout the visible region remains elusive. Color-converting powder phosphors are therefore used for making LEDs with a bespoke emission spectrum, yet broad emission lines and low absorption coefficients compromise the formation of small-footprint monochromatic LEDs. Color conversion by quantum dots (QDs) can address these issues, but high-performance monochromatic LEDs made using QDs free of restricted, hazardous elements remain to be demonstrated.
View Article and Find Full Text PDFQuantum dots (QDs) are semiconductor nanocrystals that are used in optoelectronic applications. Most modern QDs are based on toxic metals, for example Cd, and do not comply with the European Restriction of Hazardous Substances regulation of the European Union. Latest promising developments focus on safer QD alternatives based on elements from the III-V group.
View Article and Find Full Text PDFACS Appl Mater Interfaces
February 2023
For their unique optical properties, quantum dots (QDs) have been extensively used as light emitters in a number of photonic and optoelectronic applications. They even met commercialization success through their implementation in high-end displays with unmatched brightness and color rendering. For such applications, however, QDs must be shielded from oxygen and water vapor, which are known to degrade their optical properties over time.
View Article and Find Full Text PDFInP/ZnSe/ZnS quantum dots (QDs) offer a cadmium-free solution to make white LEDs with a narrow blue, green and red emission peak. Such LEDs are required for display and lighting applications with high color gamut. An important phenomenon that hampers the efficiency of such quantum-dot-on-chip LEDs is re-absorption of already converted light by the QDs.
View Article and Find Full Text PDFPhotoluminescent color conversion by quantum dots (QDs) makes possible the formation of spectrum-on-demand light sources by combining blue LEDs with the light generated by a specific blend of QDs. Such applications, however, require a near-unity photoluminescence quantum efficiency since self-absorption magnifies disproportionally the impact of photon losses on the overall conversion efficiency. Here, we present a synthesis protocol for forming InP-based QDs with +90% quantum efficiency across the full visible spectrum from blue/cyan to red.
View Article and Find Full Text PDF