Publications by authors named "Hannes Schreiter"

Objective: To investigate how different combinations of T1-weighted (T1w), T2-weighted (T2w), and diffusion-weighted imaging (DWI) impact the performance of virtual contrast-enhanced (vCE) breast MRI.

Materials And Methods: The IRB-approved, retrospective study included 1064 multiparametric breast MRI scans (age: 52 ± 12 years) obtained from 2017 to 2020 (single site, two 3-T MRI). Eleven independent neural networks were trained to derive vCE images from varying input combinations of T1w, T2w, and multi-b-value DWI sequences (b-value = 50-1500 s/mm).

View Article and Find Full Text PDF

Objectives: To evaluate whether artifacts on contrast-enhanced (CE) breast MRI maximum intensity projections (MIPs) might already be forecast before gadolinium-based contrast agent (GBCA) administration during an ongoing examination by analyzing the unenhanced T1-weighted images acquired before the GBCA injection.

Materials And Methods: This IRB-approved retrospective analysis consisted of n = 2884 breast CE MRI examinations after intravenous administration of GBCA, acquired with n = 4 different MRI devices at different field strengths (1.5 T/3 T) during clinical routine.

View Article and Find Full Text PDF

Objectives: To automatically detect MRI artifacts on dynamic contrast-enhanced (DCE) maximum intensity projections (MIPs) of the breast using deep learning.

Methods: Women who underwent clinically indicated breast MRI between October 2015 and December 2019 were included in this IRB-approved retrospective study. We employed two convolutional neural network architectures (ResNet and DenseNet) to detect the presence of artifacts on DCE MIPs of the left and right breasts.

View Article and Find Full Text PDF