Amino acids are the building blocks of proteins. In this respect, a reciprocal effect of recombinant protein production on amino acid biosynthesis as well as the impact of the availability of free amino acids on protein production can be anticipated. In this study, the impact of engineering the amino acid metabolism on the production of recombinant proteins was investigated in the yeast Pichia pastoris (syn Komagataella phaffii).
View Article and Find Full Text PDF3-hydroxypropionic acid (3-HP) is among the top platform chemicals proposed for bio based production by microbial fermentation from renewable resources. A promising renewable substrate for 3-HP production is crude glycerol. Only a few microorganisms can efficiently convert glycerol to 3-HP.
View Article and Find Full Text PDFProbiotics are generally considered as safe, but infections may rarely occur in vulnerable patients. Alternatives to live microorganisms to manage dysbiosis may be of interest in these patients. Reuterin is a complex component system exhibiting broad spectrum antimicrobial activity and a possible candidate substance in these cases.
View Article and Find Full Text PDFBackground: Biobutanol has great potential as biofuel of the future. However, only a few organisms have the natural ability to produce butanol. Amongst them, spp.
View Article and Find Full Text PDFPlant oil based industrial oleochemistry leads to a large side stream of crude glycerol, which offers itself as a low price carbon source for microbial chemical production. Compared to sugar, glycerol is more reduced and less microorganisms are able to use it as carbon source. An interesting feature of glycerol conversion is that many organisms cannot use it as carbon source at all, but they readily use it as electron sink under anaerobic conditions.
View Article and Find Full Text PDFRayon filaments composed of regenerated cellulose are used as reinforcement materials in tires and to a lower extent in the clothing industry as personal protective equipment e.g. flame retardant cellulosic based materials.
View Article and Find Full Text PDFLactic acid bacteria are well known to be beneficial for food production and, as probiotics, they are relevant for many aspects of health. However, their potential as cell factories for the chemical industry is only emerging. Many physiological traits of these microorganisms, evolved for optimal growth in their niche, are also valuable in an industrial context.
View Article and Find Full Text PDFMass spectrometry-based metabolomic profiling is a powerful strategy to quantify the concentrations of numerous primary metabolites in parallel. To avoid distortion of metabolite concentrations, quenching is applied to stop the cellular metabolism instantly. For yeasts, cold methanol quenching is accepted to be the most suitable method to stop metabolism, while keeping the cells intact for separation from the supernatant.
View Article and Find Full Text PDFThe yeast is a fascinating microorganism with an amazing metabolic flexibility. This yeast grows very well on a wide variety of carbon sources from alkanes over lipids, to sugars and glycerol. accumulates a wide array of industrially relevant metabolites.
View Article and Find Full Text PDFProduction of heterologous proteins in Pichia pastoris (syn. Komagataella sp.) has been shown to exert a metabolic burden on the host metabolism.
View Article and Find Full Text PDFBackground: Some yeasts have evolved a methylotrophic lifestyle enabling them to utilize the single carbon compound methanol as a carbon and energy source. Among them, Pichia pastoris (syn. Komagataella sp.
View Article and Find Full Text PDFMetabolomics can be defined as the quantitative assessment of a large number of metabolites of a biological system. A prerequisite for the accurate determination of intracellular metabolite concentrations is a reliable and reproducible sample preparation method, which needs to be optimized for each organism individually. Here, we compare the performance of rapid filtration and centrifugation after quenching of Pichia pastoris cells in cold methanol.
View Article and Find Full Text PDFThe production of recombinant proteins is frequently enhanced at the levels of transcription, codon usage, protein folding and secretion. Overproduction of heterologous proteins, however, also directly affects the primary metabolism of the producing cells. By incorporation of the production of a heterologous protein into a genome scale metabolic model of the yeast Pichia pastoris, the effects of overproduction were simulated and gene targets for deletion or overexpression for enhanced productivity were predicted.
View Article and Find Full Text PDFFor the first time, an interlaboratory comparison was performed in the field of quantitative metabolite profiling in Pichia pastoris. The study was designed for the evaluation of different measurement platforms integrating different quantification strategies using internal standardization. Nineteen primary metabolites including amino acids and organic acids were selected for the study.
View Article and Find Full Text PDFQuantitative metabolic profiling is preceded by dedicated sample preparation protocols. These multistep procedures require detailed optimization and thorough validation. In this work, a uniformly (13)C-labeled (U(13)C) cell extract was used as a tool to evaluate the recoveries and repeatability precisions of the cell extraction and the extract treatment.
View Article and Find Full Text PDFThe combination of functional genomics with next generation sequencing facilitates new experimental strategies for addressing complex biological phenomena. Here, we report the identification of a gain-of-function allele of peroxiredoxin (thioredoxin peroxidase, Tsa1p) via whole-genome re-sequencing of a dominantSaccharomyces cerevisiae mutant obtained by chemical mutagenesis. Yeast strain K6001, a screening system for lifespan phenotypes, was treated with ethyl methanesulfonate (EMS).
View Article and Find Full Text PDF