Climate change is predicted to alter the hydrological and thermal regimes of high-mountain streams, particularly glacier-fed streams. However, relatively little is known about how these environmental changes impact the microbial communities in glacier-fed streams. Here, we operated streamside flume mesocosms in the Swiss Alps, where benthic biofilms were grown under treatments simulating climate change.
View Article and Find Full Text PDFClimate change induced shifts in treeline position, both towards higher altitudes and latitudes induce changes in soil organic matter. Eventually, soil organic matter is transported to alpine and subarctic lakes with yet unknown consequences for dissolved organic matter (DOM) diversity and processing. Here, we experimentally investigate the consequences of treeline shifts by amending subarctic and temperate alpine lake water with soil-derived DOM from above and below the treeline.
View Article and Find Full Text PDFUnlabelled: Global change exposes ecosystems to changes in the frequency, magnitude, and concomitancy of disturbances, which impact the composition and functioning of these systems. Here, we experimentally evaluate the effects of salinity disturbances and eutrophication on bacterial communities from coastal ecosystems. The functional stability of these communities is critically important for maintaining water quality, productivity, and ecosystem services, such as fishery yields.
View Article and Find Full Text PDFThe glaciers on Africa's 'Mountains of the Moon' (Rwenzori National Park, Uganda) are predicted to disappear within the next decades owing to climate change. Consequently, the glacier-fed streams (GFSs) that drain them will vanish, along with their resident microbial communities. Despite the relevance of microbial communities for performing ecosystem processes in equatorial GFSs, their ecology remains understudied.
View Article and Find Full Text PDFIn proglacial floodplains, glacier recession promotes biogeochemical and ecological gradients across relatively small spatial scales. The resulting environmental heterogeneity induces remarkable microbial biodiversity among proglacial stream biofilms. Yet the relative importance of environmental constraints in forming biofilm communities remains largely unknown.
View Article and Find Full Text PDFAntimicrobial resistance (AMR) is a universal phenomenon the origins of which lay in natural ecological interactions such as competition within niches, within and between micro- to higher-order organisms. To study these phenomena, it is crucial to examine the origins of AMR in pristine environments, i.e.
View Article and Find Full Text PDFGlacier shrinkage opens new proglacial terrain with pronounced environmental gradients along longitudinal and lateral chronosequences. Despite the environmental harshness of the streams that drain glacier forelands, their benthic biofilms can harbor astonishing biodiversity spanning all domains of life. Here, we studied the spatial dynamics of prokaryotic and eukaryotic photoautotroph diversity within braided glacier-fed streams and tributaries draining lateral terraces predominantly fed by groundwater and snowmelt across three proglacial floodplains in the Swiss Alps.
View Article and Find Full Text PDFMicrobial life in glacier-fed streams (GFSs) is dominated by benthic biofilms which fulfill critical ecosystem processes. However, it remains unclear how the bacterial communities of these biofilms assemble in stream ecosystems characterized by rapid turnover of benthic habitats and high suspended sediment loads. Using16S rRNA gene amplicon sequence data collected from 54 GFSs across the Himalayas, European Alps, and Scandinavian Mountains, we found that benthic biofilms harbor bacterial communities that are distinct from the bacterial assemblages suspended in the streamwater.
View Article and Find Full Text PDFThe melting of the cryosphere is among the most conspicuous consequences of climate change, with impacts on microbial life and related biogeochemistry. However, we are missing a systematic understanding of microbiome structure and function across cryospheric ecosystems. Here, we present a global inventory of the microbiome from snow, ice, permafrost soils, and both coastal and freshwater ecosystems under glacier influence.
View Article and Find Full Text PDFIn glacier-fed streams, ecological windows of opportunity allow complex microbial biofilms to develop and transiently form the basis of the food web, thereby controlling key ecosystem processes. Using metagenome-assembled genomes, we unravel strategies that allow biofilms to seize this opportunity in an ecosystem otherwise characterized by harsh environmental conditions. We observe a diverse microbiome spanning the entire tree of life including a rich virome.
View Article and Find Full Text PDFBiofilms play pivotal roles in fluvial ecosystems, yet virtually nothing is known about viruses in these communities. Leveraging an optimized sample-to-sequence pipeline, we studied the spatiotemporal turnover of dsDNA viruses associated with stream biofilms and found an astounding diversity to be structured by seasons and along the longitudinal gradient in the stream. While some vOTUs were region- or season-specific, we also identified a large group of permanent biofilm phages, taxonomically dominated by Myoviridae.
View Article and Find Full Text PDFThe shrinking of glaciers is among the most iconic consequences of climate change. Despite this, the downstream consequences for ecosystem processes and related microbiome structure and function remain poorly understood. Here, using a space-for-time substitution approach across 101 glacier-fed streams (GFSs) from six major regions worldwide, we investigated how glacier shrinkage is likely to impact the organic matter (OM) decomposition rates of benthic biofilms.
View Article and Find Full Text PDFNPJ Biofilms Microbiomes
February 2022
Phototrophic biofilms form complex spatial patterns in streams and rivers, yet, how community patchiness, structure and function are coupled and contribute to larger-scale metabolism remains unkown. Here, we combined optical coherence tomography with automated O microprofiling and amplicon sequencing in a flume experiment to show how distinct community patches interact with the hydraulic environment and how this affects the internal distribution of oxygen. We used numerical simulations to derive rates of community photosynthetic activity and respiration at the patch scale and use the obtained parameter to upscale from individual patches to the larger biofilm landscape.
View Article and Find Full Text PDFThe fabrication of responsive soft materials that enable the controlled release of microbial induced calcium carbonate (CaCO) precipitation (MICP) would be highly desirable for the creation of living materials that can be used, for example, as self-healing construction materials. To obtain a tight control over the mechanical properties of these materials, needed for civil engineering applications, the amount, location, and structure of the forming minerals must be precisely tuned; this requires good control over the dynamic functionality of bacteria. Despite recent advances in the self-healing of concrete cracks and the understanding of the role of synthesis conditions on the CaCO polymorphic regulation, the degree of control over the CaCO remains insufficient to meet these requirements.
View Article and Find Full Text PDFGlacier-fed streams (GFSs) are extreme and rapidly vanishing ecosystems, and yet they harbor diverse microbial communities. Although our understanding of the GFS microbiome has recently increased, we do not know which microbial clades are ecologically successful in these ecosystems, nor do we understand potentially underlying mechanisms. Ecologically successful clades should be more prevalent across GFSs compared to other clades, which should be reflected as clade-wise distinctly low phylogenetic turnover.
View Article and Find Full Text PDFBiofilms are surface-attached and matrix-enclosed microbial communities that dominate microbial life in numerous ecosystems. Using flumes and automated optical coherence tomography, we studied the morphogenesis of phototrophic biofilms along a gradient of hydraulic conditions. Compact and coalescent biofilms formed under elevated bed shear stress, whereas protruding clusters separated by troughs formed under reduced shear stress.
View Article and Find Full Text PDFGlacier-fed streams (GFSs) exhibit near-freezing temperatures, variable flows, and often high turbidities. Currently, the rapid shrinkage of mountain glaciers is altering the delivery of meltwater, solutes, and particulate matter to GFSs, with unknown consequences for their ecology. Benthic biofilms dominate microbial life in GFSs, and play a major role in their biogeochemical cycling.
View Article and Find Full Text PDFUnderstanding the transport, dispersion and deposition of microorganisms in porous media is a complex scientific task comprising topics as diverse as hydrodynamics, ecology and environmental engineering. Modeling bacterial transport in porous environments at different spatial scales is critical to better predict the consequences of bacterial transport, yet current models often fail to up-scale from laboratory to field conditions. Here, we introduce experimental tools to study bacterial transport in porous media at two spatial scales.
View Article and Find Full Text PDFGlacier-fed streams (GFS) are harsh ecosystems dominated by microbial life organized in benthic biofilms, yet the biodiversity and ecosystem functions provided by these communities remain under-appreciated. To better understand the microbial processes and communities contributing to GFS ecosystems, it is necessary to leverage high throughput sequencing. Low biomass and high inorganic particle load in GFS sediment samples may affect nucleic acid extraction efficiency using extraction methods tailored to other extreme environments such as deep-sea sediments.
View Article and Find Full Text PDFDespite the recognition of streams and rivers as sources of methane (CH) to the atmosphere, the role of CH oxidation (MOX) in these ecosystems remains poorly understood to date. Here, we measured the kinetics of MOX in stream sediments of 14 sites to resolve the ecophysiology of CH oxidizing bacteria (MOB) communities. The streams cover a gradient of land cover and associated physicochemical parameter and differed in stream- and porewater CH concentrations.
View Article and Find Full Text PDFThe dispersal of organisms controls the structure and dynamics of populations and communities, and can regulate ecosystem functioning. Predicting dispersal patterns across scales is important to understand microbial life in heterogeneous porous environments such as soils and sediments. We developed a multi-scale approach, combining experiments with microfluidic devices and time-lapse microscopy to track individual bacterial trajectories and measure the overall breakthrough curves and bacterial deposition profiles: we, then, linked the two scales with a novel stochastic model.
View Article and Find Full Text PDFViruses drive microbial diversity, function and evolution and influence important biogeochemical cycles in aquatic ecosystems. Despite their relevance, we currently lack an understanding of their potential impacts on stream biofilm structure and function. This is surprising given the critical role of biofilms for stream ecosystem processes.
View Article and Find Full Text PDFBiofilms are a most successful microbial lifestyle and prevail in a multitude of environmental and engineered settings. Understanding biofilm morphogenesis, that is the structural diversification of biofilms during community assembly, represents a remarkable challenge across spatial and temporal scales. Here, we present an automated biofilm imaging system based on optical coherence tomography (OCT).
View Article and Find Full Text PDFMixotrophy seems to be widespread among phytoplankton, but whether this strategy is more relevant in oligotrophic lakes remains unclear. Here, we tested the hypothesis that the relative abundance of mixotrophic flagellates in lakes increases along an elevational gradient paralleling increasingly oligotrophic conditions. For this purpose, 12 lakes located between 575 and 2796 m above sea level were sampled in summer and fall to include two different seasonal windows in phytoplankton dynamics and environmental conditions.
View Article and Find Full Text PDFBiofilms regulate critical processes in porous ecosystems. However, the biophysical underpinnings of the ecological success of these biofilms are poorly understood. Combining experiments with fluidic devices, sequencing and modeling, we reveal that architectural plasticity enhances space exploitation by multispecies biofilms in porous environments.
View Article and Find Full Text PDF