Electrically detected magnetic resonance (EDMR) is a promising method to readout spins in miniaturized devices utilized as quantum magnetometers. However, the sensitivity has remained challenging. In this study, we present a tandem (de-)modulation technique based on a combination of magnetic field and radio frequency modulation.
View Article and Find Full Text PDFA strategy for increasing the conversion efficiency of organic photovoltaics has been to increase the VOC by tuning the energy levels of donor and acceptor components. However, this opens up a new loss pathway from an interfacial charge transfer state to a triplet exciton (TE) state called electron back transfer (EBT), which is detrimental to device performance. To test this hypothesis, we study triplet formation in the high performing PTB7:PC71BM blend system and determine the impact of the morphology-optimizing additive 1,8-diiodoctane (DIO).
View Article and Find Full Text PDFThe 2,5-bis(borolyl)thiophene 2, a conjugated acceptor-π-acceptor system, can be reduced to the monoradical anion [2](.-) , the dianion [2](2-) , and the tetraanion [2](4-) . The dianion [2](2-) was also prepared by a comproportionation reaction and features an absorption maximum in the near-IR region (λmax =800 nm), which is characteristic of a bipolaron with a quinoidal structure.
View Article and Find Full Text PDFUnderstanding of degradation mechanisms in polymer:fullerene bulk-heterojunctions on the microscopic level aimed at improving their intrinsic stability is crucial for the breakthrough of organic photovoltaics. These materials are vulnerable to exposure to light and/or oxygen, hence they involve electronic excitations. To unambiguously probe the excited states of various multiplicities and their reactions with oxygen, we applied combined magneto-optical methods based on multifrequency (9 and 275 GHz) electron paramagnetic resonance (EPR), photoluminescence (PL), and PL-detected magnetic resonance (PLDMR) to the conjugated polymer poly(3-hexylthiophene) (P3HT) and polymer:fullerene bulk heterojunctions (P3HT:PCBM; PCBM = [6,6]-phenyl-C(61)-butyric acid methyl ester).
View Article and Find Full Text PDFFrom a fundamental and application point of view it is of importance to understand how charge carrier generation and transport in a conjugated polymer (CP):fullerene blend are affected by the blend morphology. In this work light-induced electron spin resonance (LESR) spectra and transient ESR response signals are recorded on non-annealed and annealed blend layers consisting of alkyl substituted thieno[3,2-b]thiophene copolymers (pATBT) and the soluble fullerene derivative [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) at temperatures ranging from 10 to 180 K. Annealing of the blend sample leads to a reduction of the steady state concentration of light-induced PCBM anions within the blend at low temperatures (T = 10 K) and continuous illumination.
View Article and Find Full Text PDFOrganic bulk-heterojunctions (BHJ) and solar cells containing the trimetallic nitride endohedral fullerene 1-[3-(2-ethyl)hexoxy carbonyl]propyl-1-phenyl-Lu(3)N@C(80) (Lu(3)N@C(80)-PCBEH) show an open circuit voltage (V(OC)) 0.3 V higher than similar devices with [6,6]-phenyl-C[61]-butyric acid methyl ester (PC(61)BM). To fully exploit the potential of this acceptor molecule with respect to the power conversion efficiency (PCE) of solar cells, the short circuit current (J(SC)) should be improved to become competitive with the state of the art solar cells.
View Article and Find Full Text PDF