The multi-layer multi-configurational time-dependent Hartree (MCTDH) approach is an efficient method to study quantum dynamics in real and imaginary time. The present work explores its potential to describe quantum fluids. The multi-layer MCTDH approach in second quantization representation is used to study lattice models beyond one dimension at finite temperatures.
View Article and Find Full Text PDFThe correlation discrete variable representation (CDVR) enables multi-layer multi-configurational time-dependent Hartree (MCTDH) quantum dynamics simulations on general potential energy surfaces. In a recent study [R. Ellerbrock and U.
View Article and Find Full Text PDFFull-dimensional quantum dynamics simulations of the reaction of Cl with methane and its isotopomers are reported. Thermal rate constants are computed for the Cl + CH → HCl + CH, Cl + CHD → HCl + CD, and Cl + CD → DCl + CD reactions. Temperatures between 200 and 500 K are considered.
View Article and Find Full Text PDFWe present QuTree, a C++ library for tree tensor network approaches. QuTree provides class structures for tensors, tensor trees, and related linear algebra functions that facilitate the fast development of tree tensor network approaches such as the multilayer multiconfigurational time-dependent Hartree approach or the density matrix renormalization group approach and its various extensions. We investigate the efficiency of relevant tensor and tensor network operations and show that the overhead for managing the network structure is negligible, even in cases with a million leaves and small tensors.
View Article and Find Full Text PDFA new approach for the calculation of eigenstates with the state-averaged (multi-layer) multi-configurational time-dependent Hartree (MCTDH) approach is presented. The approach is inspired by the recent work of Larsson [J. Chem.
View Article and Find Full Text PDFThe correlation discrete variable representation (CDVR) enables (multilayer) multi-configurational time-dependent Hartree (MCTDH) calculations with general potentials. The CDVR employs a set of grids corresponding to single-particle functions to efficiently evaluate all potential matrix elements appearing in the MCTDH equations of motion. In standard CDVR approaches, the number of grid points employed is tied to the number of corresponding single-particle functions.
View Article and Find Full Text PDFThe theoretical treatment of the quantum dynamics of the phenyl iodide photodissociation requires an accurate analytical potential energy surface (PES) model. This model must also account for spin-orbit (SO) coupling. This study is the first step to construct accurate SO coupled PESs, namely, for the C-I dissociation coordinate.
View Article and Find Full Text PDFA full-dimensional quantum dynamics simulation of the Cl + CH → HCl + CH reaction based on first-principles theory is reported. Accurate thermal rate constants are calculated, and perfect agreement with experiment is obtained. Despite the heavy atoms present in both reactants, the passage of the reaction barrier is found to occur within only a few tens of femtoseconds.
View Article and Find Full Text PDF