Publications by authors named "Hannelore MacDonald"

Traditional mechanistic trade-offs between transmission and parasite latency period length are foundational for nearly all theories on the evolution of parasite life-history strategies. Prior theoretical studies demonstrate that seasonal host activity can generate a trade-off for obligate-host killer parasites that selects for intermediate latency periods in the absence of a mechanistic trade-off between transmission and latency period lengths. Extensions of these studies predict that host seasonal patterns can lead to evolutionary bistability for obligate-host killer parasites in which two evolutionarily stable strategies, a shorter and longer latency period, are possible.

View Article and Find Full Text PDF

The timing of seasonal activity, or phenology, is an adaptive trait that maximizes individual fitness by timing key life events to coincide with favorable abiotic factors and biotic interactions. Studies on the biotic interactions that determine optimal phenology have focused on temporal overlaps among positively-interacting species such as mutualisms. Less well understood is the extent that negative interactions such as parasitism impact the evolution of host phenology.

View Article and Find Full Text PDF

AbstractThe timing of seasonal host activity, or host phenology, is an important driver of parasite transmission dynamics and evolution. Despite the vast diversity of parasites in seasonal environments, the impact of phenology on parasite diversity remains relatively understudied. For example, little is known about the selective pressures and environmental conditions that favor a monocyclic strategy (complete a single cycle of infection per season) or a polycyclic strategy (complete multiple cycles).

View Article and Find Full Text PDF

Traditional mechanistic trade-offs between transmission and virulence are the foundation of nearly all theory on parasite virulence evolution. For obligate-host killer parasites, evolution toward intermediate virulence depends on a trade-off between virulence (time to death) and transmission (the number of progeny released upon death). Although several ecological factors impact optimal virulence strategies constrained by trade-offs, these factors have been insufficient to explain the intermediate virulence levels observed in nature.

View Article and Find Full Text PDF

Parasite-host interactions can drive periodic population dynamics when parasites overexploit host populations. The timing of host seasonal activity, or host phenology, determines the frequency and demographic impact of parasite-host interactions, which may govern whether parasites sufficiently overexploit hosts to drive population cycles. We describe a mathematical model of a monocyclic, obligate-killer parasite system with seasonal host activity to investigate the consequences of host phenology on host-parasite dynamics.

View Article and Find Full Text PDF

Phenology is a fundamental determinant of species distributions, abundances, and interactions. In host-parasite interactions, host phenology can affect parasite fitness due to the temporal constraints it imposes on host contact rates. However, it remains unclear how parasite transmission is shaped by the wide range of phenological patterns observed in nature.

View Article and Find Full Text PDF

To control and prevent rabies in Latin America, mass dog vaccination campaigns (MDVC) are implemented mainly through fixed-location vaccination points: owners have to bring their dogs to the vaccination points where they receive the vaccination free of charge. Dog rabies is still endemic in some Latin-American countries and high overall dog vaccination coverage and even distribution of vaccinated dogs are desired attributes of MDVC to halt rabies virus transmission. In Arequipa, Peru, we conducted a door-to-door post-campaign survey on >6,000 houses to assess the placement of vaccination points on these two attributes.

View Article and Find Full Text PDF

Several recent studies hint at shared patterns in decision-making between taxonomically distant organisms, yet few studies demonstrate and dissect mechanisms of decision-making in simpler organisms. We examine decision-making in the unicellular slime mould Physarum polycephalum using a classical decision problem adapted from human and animal decision-making studies: the two-armed bandit problem. This problem has previously only been used to study organisms with brains, yet here we demonstrate that a brainless unicellular organism compares the relative qualities of multiple options, integrates over repeated samplings to perform well in random environments, and combines information on reward frequency and magnitude in order to make correct and adaptive decisions.

View Article and Find Full Text PDF