To gain a more profound insight into the impact of the number and the density of protonable amines on the performance of polycations as non-viral vectors, a series of linear poly(ethylene imine)s (LPEIs) with different numbers of ethylene imine (EI) units was compared to partially hydrolyzed (21 to 86%, 20 kDa) poly(2-ethyl-2-oxazoline)s (PHPEtOxs) with a corresponding number of EI units but with varying densities. PHPEtOx polyplexes demonstrated lower transfection efficiencies than the corresponding LPEIs although having the same number of EI units as LPEI, exhibiting smaller or comparable polyplex diameters, similar zeta potentials, and similar or even preferred cyto- and hemocompatibility profiles. The lower efficiency was found to be related to a lower DNA binding capacity and less efficient protection of plasmid DNA against enzymatic degradation.
View Article and Find Full Text PDFMacromol Rapid Commun
January 2012
The monomers 2-methyl-2-oxazine (MeOZI), 2-ethyl-2-oxazine (EtOZI), and 2-n-propyl-2-oxazine (nPropOZI) were synthesized and polymerized via the living cationic ring-opening polymerization (CROP) under microwave-assisted conditions. pEtOZI and pnPropOZI were found to be thermoresponsive, exhibiting LCST behavior in water and their cloud point temperatures (T(CP)) are lower than for poly(2-oxazoline)s with similar side chains. However, comparison of poly(2-oxazine) and poly(2-oxazoline)s isomers reveals that poly(2-oxazine)s are more water soluble, indicating that the side chain has a stronger impact on polymer solubility than the main chain.
View Article and Find Full Text PDF