Publications by authors named "Hanneke Brust"

Ammonium nitrate (AN) is frequently encountered in explosives in forensic casework. It is widely available as fertilizer and easy to implement in explosive devices, for example by mixing it with a fuel. Forensic profiling methods to determine whether material found on a crime scene and material retrieved from a suspect arise from the same source are becoming increasingly important.

View Article and Find Full Text PDF

In this work, a reliable and robust vacuum-outlet gas chromatography-mass spectrometry (GC-MS) method is introduced for the identification and quantification of impurities in trinitrotoluene (TNT). Vacuum-outlet GC-MS allows for short analysis times; the analysis of impurities in TNT was performed in 4min. This study shows that impurity profiling of TNT can be used to investigate relations between TNT samples encountered in forensic casework.

View Article and Find Full Text PDF

After an explosion of pentaerythritol tetranitrate (PETN), its degradation products pentaerythritol trinitrate (PETriN), dinitrate (PEDiN) and mononitrate (PEMN) were detected using liquid chromatography-atmospheric-pressure chemical-ionization-mass spectrometry (LC-APCI-MS). Discrimination between post-explosion and naturally degraded PETN could be achieved based on the relative amounts of the degradation products. This information can be used as evidence when investigating a possible relationship between a suspect and a post-explosion crime scene.

View Article and Find Full Text PDF

Pentaerythritol tetranitrate (PETN) and its degradation products are analyzed to discriminate between residues originating from PETN explosions and residues obtained under other circumstances, such as natural degradation on textile, or after handling intact PETN. The degradation products observed in post-explosion samples were identified using liquid chromatography-mass spectrometry as the less-nitrated analogues of PETN: pentaerythritol trinitrate (PETriN), pentaerythritol dinitrate (PEDiN) and pentaerythritol mononitrate (PEMN). Significant levels of these degradation products were observed in post-explosion samples, whereas only very low levels were detected in a variety of intact PETN samples and naturally degraded PETN.

View Article and Find Full Text PDF

The results of isotope ratio mass spectrometry (IRMS) on hexamethylene triperoxide diamine (HMTD) and its precursor hexamethylenetetramine (hexamine) is presented. HMTD was prepared from hexamine using several different sources of hexamine under both controlled laboratory conditions and in field experiments that represent the less controlled conditions that are likely to be observed in forensic casework scenarios. Precursor and product carbon isotope δ values consistently fit a linear relationship regardless of precursor or conditions.

View Article and Find Full Text PDF