Background: Relapsed head and neck squamous cell carcinoma (HNSCC) unrelated to HPV infection carries a poor prognosis. Novel approaches are needed to improve the clinical outcome and prolong survival in this patient population which has poor long-term responses to immune checkpoint blockade. This study evaluated the chemokine receptors CXCR1 and CXCR2 as potential novel targets for the treatment of HPV-negative HNSCC.
View Article and Find Full Text PDFRadiation therapy (RT), a mainstay treatment for head and neck squamous cell carcinoma (HNSCC), kills cancer cells and modulates the tumor immune microenvironment. We sought to assess the effect of RT in combination with PD-L1/TGF-β dual blockade in squamous cell carcinomas (SCC) and analyze the underlying mechanisms. We transplanted mouse SCC cells derived from keratin-15 (K15) stem cells harboring Kras/Smad4 mutations into syngeneic recipients and irradiated tumors followed by PD-L1/TGF-β dual blockade.
View Article and Find Full Text PDFTriple-negative breast cancer (TNBC) often undergoes at least partial epithelial-to-mesenchymal transition (EMT) to facilitate metastasis. Identifying EMT-associated characteristics can reveal novel dependencies that may serve as therapeutic vulnerabilities in this aggressive breast cancer subtype. We found that , which encodes the lysosomal cholesterol transporter Niemann-Pick type C1 is highly expressed in TNBC as compared to estrogen receptor-positive (ER+) breast cancer, and is significantly elevated in high-grade disease.
View Article and Find Full Text PDFBackground: Despite the success of immune checkpoint blockade therapy in the treatment of certain cancer types, only a small percentage of patients with solid malignancies achieve a durable response. Consequently, there is a need to develop novel approaches that could overcome mechanisms of tumor resistance to checkpoint inhibition. Emerging evidence has implicated the phenomenon of cancer plasticity or acquisition of mesenchymal features by epithelial tumor cells, as an immune resistance mechanism.
View Article and Find Full Text PDFImmunosuppressive entities in the tumor microenvironment (TME) remain a major impediment to immunotherapeutic approaches for a majority of patients with cancer. While the immunosuppressive role of transforming growth factor-β (TGF-β) in the TME is well known, clinical studies to date with anti-TGF-β agents have led to limited success. The bifunctional agent bintrafusp alfa (previously designated M7824) has been developed in an attempt to address this issue.
View Article and Find Full Text PDFTriple negative breast cancer (TNBC) is a highly aggressive breast cancer subtype that lacks effective targeted therapies. Although TNBC is not defined by specific therapeutic targets, a subset of patients have tumors that overexpress cyclins. High cyclin D/E expression catalyzes CDK4/2 activity.
View Article and Find Full Text PDFTriple-negative breast cancer (TNBC) has the lowest 5-year survival rate of invasive breast carcinomas, and currently there are no approved targeted therapies for this aggressive form of the disease. The androgen receptor (AR) is expressed in up to one third of TNBC and we find that all AR(+) TNBC primary tumors tested display nuclear localization of AR, indicative of transcriptionally active receptors. While AR is most abundant in the "luminal AR (LAR)" molecular subtype of TNBC, here, for the first time, we use both the new-generation anti-androgen enzalutamide and AR knockdown to demonstrate that the other non-LAR molecular subtypes of TNBC are critically dependent on AR protein.
View Article and Find Full Text PDF